
Python
文章平均质量分 69
数据饕餮
高级数据产品专家,人工智能等前沿技术领域探索者,15年+一线IT行业经验,主要从事金融、互联网广告和电商行业数据产品建设。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TURN 和 STUN 的工作原理:
STUN和TURN是解决NAT穿透问题的两种协议。STUN通过获取公网IP地址实现P2P连接,适用于简单NAT环境;而TURN则通过中继服务器转发数据,适用于对称NAT等复杂场景。WebRTC技术通常结合使用两者,优先尝试STUN连接,失败时切换至TURN中继,确保通信可靠性的同时兼顾效率。STUN协议简单高效,TURN则能应对更复杂的网络环境,但会增加延迟和服务器负担。原创 2025-08-01 05:24:26 · 296 阅读 · 0 评论 -
五大开源OCR开源框架评估01-Tesseract:OCR 领域的远古巨神
本文评估了五大开源OCR框架中的Tesseract,这个由惠普实验室开发、后被Google赞助的开源OCR引擎,以其68K的GitHub星数展现了强大影响力。评估显示,Tesseract支持100多种语言,采用深度学习技术,在高质量扫描图像上表现优异,但在处理复杂布局和低质量图像时存在局限。身份证识别测试中,出现了性别后多标点、民族识别错误及身份证号异常逗号等问题,证明其在该场景"不可用"。尽管历史悠久且文档完善,但相比新兴OCR引擎,Tesseract在特定场景的准确度仍有提升空间。原创 2025-07-18 22:33:54 · 422 阅读 · 0 评论 -
AI大模型打造金融智能信审助手04.七大金融监管相关政策
金融监管政策是动态调整的,会根据经济金融形势的变化、金融创新的发展以及监管实践的经验不断完善和优化,以适应新的挑战和需求,保障银行业的稳健运行和金融体系的稳定。原创 2025-07-18 17:09:28 · 377 阅读 · 0 评论 -
Pytorch深度学习框架实战教程03:Tensor 的创建、属性、操作与转换详解
本文深入解析PyTorch中的Tensor数据结构,涵盖其创建、属性和操作。Tensor是PyTorch的核心多维数组,支持从Python列表、NumPy数组等多种方式创建,并可通过工厂函数生成特定形状的张量。文章详细介绍了Tensor的关键属性(shape、dtype、device等)、数学运算、索引切片、形状操作(view/reshape)、连接堆叠等核心功能,以及数据类型转换、设备迁移和与NumPy的互操作。特别强调了view与reshape的区别及内存连续性处理。掌握这些Tensor操作是使用PyT原创 2025-07-17 23:15:29 · 1299 阅读 · 0 评论 -
Pytorch深度学习框架实战教程02:开发环境部署
本文详细介绍了PyTorch CPU/GPU双版本的完整安装流程。首先明确硬件和软件环境要求,包括CPU/GPU配置和操作系统版本。接着分步骤讲解Python环境搭建(推荐Miniconda)、CPU版本安装、GPU版本安装(含CUDA和cuDNN配置)以及Docker部署方案。提供详细的安装验证方法,包括基础功能测试和性能基准测试。针对常见问题给出解决方案,并分享环境优化建议。最后根据不同应用场景推荐最佳安装方案,帮助用户快速搭建高效的深度学习开发环境。原创 2025-07-17 19:19:58 · 965 阅读 · 0 评论 -
Pytorch深度学习框架实战教程01:简介
PyTorch 是基于 Python 的深度学习框架,由 Facebook 开发维护,提供了动态计算图、GPU 加速等功能,被广泛应用于学术研究与工业界。原创 2025-07-14 06:39:15 · 999 阅读 · 0 评论 -
Pytorch深度学习框架实战教程09:模型的保存和加载
本文介绍了PyTorch中模型保存与加载的两种方法:一是仅保存模型权重,通过state_dict和load_state_dict实现;二是同时保存模型结构和权重。第一种方法需先创建相同模型实例再加载权重,第二种方法可直接保存整个模型。文章强调了使用weights_only=True加载权重的最佳实践,并提醒导入模型类的重要性。这两种方式为深度学习模型部署提供了灵活性选择。原创 2025-07-17 07:08:52 · 366 阅读 · 0 评论 -
Python数据分析基础04:预测性数据分析
本文系统解析预测性数据分析的方法论与实践应用。从业务目标定义出发,详细阐述回归模型、分类模型和时间序列预测三大核心方法及其数学原理,结合金融信用评分、零售销量预测等案例说明模型评估指标的选择标准。文章强调业务导向的模型设计原则,包括特征工程处理、过拟合诊断和持续监控机制,并探讨大模型对传统预测方法的革新。最后提出预测分析需与DCMM数据治理框架融合,确保模型可解释性和稳定性,为各行业的数据驱动决策提供理论指导。原创 2025-07-05 21:48:18 · 1119 阅读 · 0 评论 -
YOLOv11:重新定义实时目标检测的未来
Ultralytics YOLOv11 是备受赞誉的实时目标检测和图像分割模型的最新版本。YOLOv11 基于深度学习和计算机视觉领域的最先进进展,提供了无与伦比的速度和精度性能。其简洁的设计使其适用于各种应用场景,并且可以轻松适应从边缘设备到云端 API 的不同硬件平台。2024.10Ultralytics 团队自豪地宣布推出 YOLOv11,这是其备受赞誉的实时目标检测和图像分割模型系列的最新版本。YOLOv11 基于最新的深度学习和计算机视觉技术,提供了前所未有的速度和精度。原创 2024-10-02 07:24:39 · 4347 阅读 · 0 评论 -
Conda历史版本下载地址和python对应关系
因为Conda安装版本问题,带来了很多问题,虽然不能直接确定二者之间的关系,但是安装指定版本的conda,确实是一个比较好的方法。特此记忆。原创 2024-02-08 00:58:45 · 2499 阅读 · 0 评论 -
ffmpeg操作实战001:视频+音频文件融合
把视频文件video.mp4 和音频文件audio.wav融合在一起,输出视频文件output.mp4。原创 2024-02-04 08:26:55 · 2091 阅读 · 0 评论 -
Python Moviepy 视频编辑踩坑实录2:音频如何修改为单通道
python Moviepy属于第三方封装的,基于ffmpeg的包,直接调用,涉及到很多默认参数的设定,会影响,最终目标的实现。慎用,慎用。可能的情况下,推荐使用ffmpeg原始参数和命令。原创 2024-02-03 18:47:03 · 920 阅读 · 0 评论 -
Python Moviepy 视频编辑踩坑实录01:谁动了我的音频比特率
1.音频比特率:从16000,调用函数后编程了44100。部分参数采用了默认值,包括音频比特率,通道类型。2. 音频通道数:从1通道,变成了2通道;原创 2024-02-03 16:41:44 · 1597 阅读 · 0 评论 -
ubuntu22.04安装部署02:禁用显卡更新
使用cuda自带额显卡驱动,居然无法,找到如何锁定,留个问号。原创 2024-02-02 16:09:49 · 1371 阅读 · 0 评论 -
ubuntu22.04 安装部署01:禁用内核更新
ubunut22.04系统安装以后,内核更新会导致各种各样的问题,因此锁定初始安装环境特别重要,下面介绍如何锁定内核更新。原创 2024-02-02 13:34:04 · 4252 阅读 · 0 评论 -
pip安装镜像源设置
清华:https://pypi.tuna.tsinghua.edu.cn/simple。阿里云:http://mirrors.aliyun.com/pypi/simple/时,建议替换为国内源,下载速度会提升;的时候,推荐切换官方源;原创 2024-01-27 14:05:26 · 3560 阅读 · 0 评论 -
Python3.8以上版本安装Tensorflow1.15.0教程
最近在探索基于三维重建的数字人开发,Ubuntu环境下,需要用到Tensorflow1.x版本,但是从Python 3.7 版本以后,pip已经不在支持tensorflow1.x版本。无奈四处求索,最终找到了python3.7以上版本安装Tensorflow1.x版本的方法,特此备注在此,算是笔记。原创 2023-01-03 13:20:01 · 5035 阅读 · 1 评论 -
ESRGAN网络结构、论文和源码
图像增强处理框架ESRGAN网络结构、论文和源码原创 2022-11-12 07:31:43 · 1186 阅读 · 0 评论 -
图像增强处理工具:BasicSR安装和部署
BasicSR图像增强处理的工具平台,支持多种主流的图像修复框架,支持模型的训练。可以把低分辨率图像,转换为高分辨率图像。原创 2022-11-12 07:13:37 · 3793 阅读 · 3 评论 -
Python + Flask程序调试技巧(2):导入自定义模块失败
一、问题描述当导入字定义模块文件:model/rtindex中自定义的函数:pay_sum_query()时,提示:"unresolved reference"。具体现象如下图所示:二、解决办法三、后记好记性,不如烂笔头。随遇随记,以备查询。...原创 2020-07-09 15:06:33 · 1027 阅读 · 0 评论 -
Python+Flask程序调试笔记(1):代码修改后立即生效
一、问题描述Python + Flask程序开发过程中,修改模板文件和修改Python程序后,默认情况下,需要重新运行服务,才能够刷新。如果想要修改模板/程序后,让代码立即生效,需要特殊处理。1. 模板修改:如何立即生效?2. 程序修改:如何立即生效?二、解决方法1. 模板修改:# 模板更改后立即生效app.jinja_env.auto_reload = True2. 程序修改:三、说明好记性,不如烂笔头,随手记录,以备查询。...原创 2020-07-09 14:57:56 · 3195 阅读 · 0 评论 -
Python NLP完整项目实战教程(1)
一、前言打算写一个系列的关于自然语言处理技术的文章《Python NLP完整项目实战》,本文算是系列文章的起始篇,为了能够有效集合实际应用场景,避免为了学习而学习,考虑结合一个具体的项目案例展开:汽车投诉问题的自动化分类系统。敬请期待!二、正文 章 标题 节 关键技术 1 项目概述篇 1.1 学习指引 课程收益、对象、大纲 2...原创 2018-12-03 16:24:21 · 7700 阅读 · 1 评论 -
《知识图谱完整项目实战》学习指引
一、前言本文是《知识图谱完整项目实战(附源码)》系列课程的学习指引部分,主要是对《知识图谱完整项目实战》的课程特色、章节设置、关键技术和主要内容做一个简介,目的是让大家对本课程有一个系统性的认知。二、正文2.1 课程特色 图1:课程特色指导思想:做导师、不做保姆。之所以有这样一条,一方面因为我确实比较忙,拿不出那么多的时间帮助大家逐个细节的解决问题;另外一个方面也是...原创 2018-11-28 16:28:49 · 7949 阅读 · 0 评论