免费链接: Blogger(需翻Q)
基本概念
小样本学习(few-shot learning)是什么:就是使用很少的样本来进行分类或回归
Few-shot Learning的目标:让机器学会自己学习
小样本学习的直观理解:
① 前提:首先要知道,训练一个模型的目的不是为了让模型如何分辨大象和蚂蚁,而是让模型具有判断图片“异同”的能力,即让模型看到两张图片后,它能分别出这俩是不是一个类别。这样,当我们在用大数据集训练出一个分类器后,在测试阶段给模型一个从来没见过的类别的图片(假设给了一个水獭图片),此时模型虽然不知道它是什么类别,但是依然能知道它不属于之前的所有类别。这时如果再给一个相同类别的图片(假设又给了一张水獭图片),此时虽然模型从来没见过这种类别的图片(模型从来没见过水獭),但模型依然能知道这俩是一种类别(模型能判断出这两张图片是一种动物)
② 思路:先用大的训练数据集训练出一个具备判断“异同”能力的模型,在测试阶段,再给一个小样本数据集(称为Support Set),里面会包含模型没见过的样本类别,然后让模型判断当前给的图片属于 Support Set 中的哪一个类别。
例如: