【学习笔记】小样本学习(Few-shot Learning)入门


免费链接: Blogger(需翻Q)


基本概念

小样本学习(few-shot learning)是什么:就是使用很少的样本来进行分类或回归

Few-shot Learning的目标:让机器学会自己学习

小样本学习的直观理解

① 前提:首先要知道,训练一个模型的目的不是为了让模型如何分辨大象和蚂蚁,而是让模型具有判断图片“异同”的能力,即让模型看到两张图片后,它能分别出这俩是不是一个类别。这样,当我们在用大数据集训练出一个分类器后,在测试阶段给模型一个从来没见过的类别的图片(假设给了一个水獭图片),此时模型虽然不知道它是什么类别,但是依然能知道它不属于之前的所有类别。这时如果再给一个相同类别的图片(假设又给了一张水獭图片),此时虽然模型从来没见过这种类别的图片(模型从来没见过水獭),但模型依然能知道这俩是一种类别(模型能判断出这两张图片是一种动物)
② 思路:先用大的训练数据集训练出一个具备判断“异同”能力的模型,在测试阶段,再给一个小样本数据集(称为Support Set),里面会包含模型没见过的样本类别,然后让模型判断当前给的图片属于 Support Set 中的哪一个类别。

例如:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值