如何一行代码实现List<Integer> 平均分成N份?

本文介绍使用Guava库中的Lists.partition方法进行数据分批处理的技巧,通过将大量数据分成小批次,既保证了程序性能,也确保了数据处理的安全性。此方法适用于历史数据处理和其他需要分批处理的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

public class GuavaDemo {

    public static void main(String[] args) {
        List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        List<List<Integer>> parts = Lists.partition(list, 5);
        for (List<Integer> part : parts) {
            System.out.println(part);
        }
    }
}

打印结果:

[1, 2, 3, 4, 5]
[6, 7, 8, 9, 10]

应用场景:

       当时做项目处理历史数据的时候,怕一次性查出来的数据太多,影响性能,故而采取分批的思想,就用到了上面的处理方法,既保证了性能,又保证了安全性。其实一些其他的分批处理的场景也可以借鉴上面的方式去简化处理,非常方便。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值