1.2 k近邻算法api初步使用

  • 机器学习流程复习:

  • 1.获取数据集
  • 2.数据基本处理
  • 3.特征工程
  • 4.机器学习
  • 5.模型评估

1 Scikit-learn工具介绍

 

  • Python语言的机器学习工具
  • Scikit-learn包括许多知名的机器学习算法的实现
  • Scikit-learn文档完善,容易上手,丰富的API
  • 目前稳定版本0.19.1

1.1 安装

pip3 install scikit-learn==0.19.1

安装好之后可以通过以下命令查看是否安装成功

import sklearn
  • 注:安装scikit-learn需要Numpy, Scipy等库

1.2 Scikit-learn包含的内容

  • 分类、聚类、回归
  • 特征工程
  • 模型选择、调优

2 K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5)
    • n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数

3 案例

3.1 步骤分析

  • 1.获取数据集
  • 2.数据基本处理(该案例中省略)
  • 3.特征工程(该案例中省略)
  • 4.机器学习
  • 5.模型评估(该案例中省略)

3.2 代码过程

  • 导入模块
from sklearn.neighbors import KNeighborsClassifier
  • 构造数据集
x = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]
  • 机器学习 -- 模型训练
# 实例化API
estimator = KNeighborsClassifier(n_neighbors=1)
# 使用fit方法进行训练
estimator.fit(x, y)

estimator.predict([[1]])

4 小结

  • sklearn的优势:
    • 文档多,且规范
    • 包含的算法多
    • 实现起来容易
  • knn中的api
    • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5)

问题

1.距离公式,除了欧式距离,还有哪些距离公式可以使用?

2.选取K值的大小?

3.api中其他参数的具体含义?

从零开始,掌握人工智能!  开启AI之门,探索智能未来!

手把手教你学AI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

手把手教你学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值