Redis主从复制问题和扩容问题的解决思路

转载于:http://www.itxuexiwang.com/a/shujukujishu/redis/2016/0216/106.html?1455867541
一、解决主从复制问题
当使用Redis作为存储引擎的时候,并且使用Redis​读写分离,从机作为读的情况,从机宕机或者和主机断开连接都需要重新连接主机,重新连接主机都会触发全量的主从复制,这时候主机会生成内存快照,主机依然可以对外提供服务,但是作为读的从机,就无法提供对外服务了,如果数据量大,恢复的时间会相当的长。为了解决Redis主从Copy的问题,有如下两个解决方案:
主动复制
所谓主动复制,就是业务层双写多个Redis,避开Redis自带的主从复制。但是自己干同步,就会产生一致性问题,为了保证主从一致,需要加入一系列的验证机制。而且这样的做法,会降低系统性能。
修改源代码,支持增量同步
Redis写AOF文件,关闭Redis rewrite AOF文件功能,为了避免文件过大,可以自己实现文件分割功能。
在业务低峰时期,生成内存快照,并记录快照时刻AOF所在的点。
当从机重连的时候,从机发送同步命令给主机,主机收到命令后,把最新的快照文件发送给从机,从机从快照文件中恢复,并且获得了该快照对应的AOF点,从机将AOF点发送给主机,主机将AOF文件中该点之后的所有数据操作同步给从机,达到增量同步的效果。
二、解决扩容问题
Redis作者的思路是:Redis Presharding(http://oldblog.antirez.com/post/redis-presharding.html)
预算设定Redis instances数量,假设实例数量n,n = 机器数*单台机器redis实例数
后期扩展只需要将旧机器上的部分redis实例迁移到新的机器上,达到平滑扩容。
迁移步骤如下:
在新的机器上创建实例,并且每个实例设置为被迁移实例的从机。
主从复制完成之后,设置程序将新的实例作为主。
停止旧的实例
经过如上步骤之后,旧机器的内存就变大了,最后内存最大为每台机器一个Redis实例。
按作者文章中所说的,一个机器启动多个实例,其实并不会耗费太多资源,因为Redis够轻量,另外多个实例一个接一个的重写AOF文件或者生成内存快照,可以降低内存的占用,而不影响对外的服务
<think>嗯,用户让我介绍一下基于Redis的高频访问信息缓存,以及如何解决缓存穿透、雪崩击穿的问题,并且还要提出相关的面试问题。首先,我需要确保自己对这些概念有清晰的理解,然后才能组织出合适的面试问题。 首先,缓存穿透。我记得这是指查询一个不存在的数据,导致每次请求都直接打到数据库上。解决方法可能有布隆过滤器或者缓存空对象。但得确认这些方法的优缺点,比如布隆过滤器的误判率空间占用,缓存空对象的过期时间设置。 然后是缓存雪崩,这应该是大量缓存同时过期或者Redis宕机,导致数据库压力激增。解决方法可能包括随机过期时间、集群高可用,或者永不过期加后台更新。需要区分雪崩击穿的区别,雪崩是大面积失效,击穿是单个热点数据失效。 缓存击穿,指的是热点数据在过期瞬间,大量请求直接访问数据库。解决方法可能有互斥锁或者逻辑过期。互斥锁可能会影响性能,而逻辑过期需要后台更新,但数据可能不一致。 接下来,用户需要的是面试问题,所以需要从基础到进阶,覆盖原理、解决方案、实际应用场景。可能需要设计问题来考察候选人对这些概念的理解深度,以及解决实际问题的能力。 比如,基础问题可以问缓存穿透、雪崩、击穿的区别,解决方案。进阶问题可能涉及布隆过滤器的实现原理,互斥锁的具体实现方式,比如Redis的setnx命令。还有实际场景题,让候选人设计一个防止雪崩的方案,或者如何处理热点数据突然过期的情况。 还要注意Redis数据结构,比如如何选择合适的数据结构来存储缓存,以及持久化策略对缓存的影响。可能还要涉及Redis集群的高可用方案,比如主从复制、哨兵、Cluster模式等。 需要确保问题覆盖全面,既有理论又有实践,同时考察候选人的问题解决能力经验。比如,是否知道预热缓存、降级策略、熔断机制等。 另外,可能还要考虑Redis的内存淘汰策略,比如LRU、LFU,不同策略在缓存场景中的应用。以及如何监控缓存的有效性,如何评估缓存命中率等运维相关的问题。 最后,要提醒候选人在回答时结合项目经验,举例说明他们是如何在实际项目中应用这些方案的,以展示实际操作能力。</think>以下是为"Redis缓存高频访问与三⼤缓存问题"主题整理的20个典型⾯试题及考察要点分层说明: --- ### ⼀、基础原理层(5题) 1. **缓存穿透/雪崩/击穿三者的核⼼区别是什么?** - 穿透:**恶意访问不存在数据** - 雪崩:**⼤⾯积缓存同时失效** - 击穿:**单个热点缓存失效后并发冲击** 2. **描述布隆过滤器防穿透的⼯作原理** - 要点:**位数组+哈希函数、存在误判率、空间效率优势** 3. **缓存空对象⽅案如何处理数据更新问题?** - 需答出:**设置较短的过期时间、异步更新策略** 4. **缓存雪崩的随机过期时间⽅案如何实现?** - 公式示例:$$ T_{real} = T_{base} + random(0, T_{variance}) $$ 5. **互斥锁解决击穿问题时,为什么要⽤SETNX⽽不是普通的加锁?** - 关键点:**Redis原⼦性操作、防⽌分布式锁冲突** --- ### ⼆、进阶设计层(8题) 6. **如何设计⼀个带熔断机制的缓存系统?** - 需包含:**请求量阈值监控、降级策略、恢复机制** 7. **逻辑过期⽅案中,如何实现后台异步更新?** - 典型流程:**获取过期标识→触发更新任务→返回旧数据** 8. **布隆过滤器如何应对数据扩容?** - 难点说明:**需要重建过滤器、采⽤可扩展布隆过滤器** 9. **热点Key发现⽅案有哪些?** - 参考答案:**客户端统计、代理层监控、Redis监控命令** 10. **如何通过双缓存策略防击穿?** - 结构示例: ```text 主缓存:正常过期时间 备份缓存:更⻓过期时间 ``` 11. **Redis持久化策略对缓存恢复的影响?** - 需⽐较:**RDB快照恢复速度 vs AOF数据完整性** 12. **缓存预热的具体实施⽅案?** - 要点:**启动时加载热点数据、历史访问数据分析** 13. **如何通过限流保护数据库?** - 技术栈举例:**Redis-Cell模块、令牌桶算法实现** --- ### 三、综合实战层(7题) 14. **设计⼀个电商秒杀系统的缓存架构** - 考察点:**热点库存缓存、本地缓存+Redis多级缓存、库存扣减⽅式** 15. **当缓存与数据库⼀致性发⽣冲突时如何取舍?** - 需分析:**CAP理论中的CP/AP选择、业务场景特性** 16. **如何优化⼤Value缓存导致的性能问题?** - 解决思路:**数据压缩、分片存储、使⽤更合适的数据结构** 17. **处理缓存脏数据的常⽤⼿段?** - 组合⽅案:**设置合理的过期时间+版本号机制+延迟双删** 18. **如何实现缓存资源的动态扩容?** - 集群⽅案:**Redis Cluster的槽位迁移原理** 19. **设计⼀个实时监控缓存健康度的系统** - 关键指标:**命中率、响应时间、内存使⽤率、淘汰率** 20. **当发现缓存命中率持续下降时,你的排查思路?** - 排查路径:**热点Key分析→过期策略检查→业务查询模式变化→内存碎⽚情况** --- ### 四、深度扩展题(附加) - **Redis6.0新特性对缓存优化的影响?** - 重点:**多线程IO、客户端缓存(Client-side caching)** - **如何应⽤机器学习预测缓存失效?** - 创新点:**基于历史访问模式的智能过期时间调整** --- 以上问题设计覆盖**原理理解→⽅案设计→系统架构→故障排查**的知识链条,建议候选⼈在准备时: 1. 结合具体项⽬经验说明 2. 对每个解决⽅案要能说明优缺点 3. 重点掌握布隆过滤器、分布式锁、熔断降级等核⼼技术点的实现细节
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

手把手教你学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值