为什么KL-divergence 可以用来衡量两个概率分布的不相似性?

本文深入探讨了KL-divergence的概念,解释了如何通过它来量化两个概率分布p(x)和q(x)之间的不相似性。根据PRML一书,当用q(x)估计p(x)时,KL-divergence表示平均额外的编码信息长度,用于评估分布估计的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下所有内容均来自 PRML 一书,读者读了之后,有任何没有看懂的,请留言。我是传播知识的小蜜蜂

首先KL-divergence的定义:

如果有个未知的分布为p(x),我们使用q(x)估计它。从信息传输的角度理解,如果使用它们刻画信息编码的方法。那么使用q(x)估计p(x)时,平均额外需要多编码的信息长度为:

KL(pq)=p(x)lnq(x)dx(p(x)ln
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值