自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(46)
  • 收藏
  • 关注

原创 要做 PRD 不如先做白板共建,产品+技术沟通顺滑了太多

在我们团队中,用白板共建需求后,产品和技术的需求会审时间从平均 2.5 小时下降到了 40 分钟,PRD 完成周期减少了一半。在我们实际项目中,PRD 不再从空白文档开始,而是从一个多人共建的协作白板开始。于是,我们不再把“写PRD”当作起点,而是让“白板共建”成为产品+技术的第一步。而白板共建,用图形 + 模块 + 注释,把这些“模糊的理解”显性化,才是真正的。产品在讲需求,技术在心里盘算实现成本,表面点头,实则理解偏差;:可复用、可追溯、可拓展,团队间沟通更“轻”,协作更“顺”。

2025-07-18 09:47:12 427

原创 Sprint 0 阶段怎么做方案脑暴?这份“技术白板协作”流程值得收藏!

Sprint 还没开始,团队已经开了三轮会,还是没人能完整说清楚需求和方案。—— 如果你也有类似感受,是时候让“多人白板协作”加入你的 Sprint 0 工具箱了。

2025-07-18 09:04:12 477

原创 不是你不复盘,而是你没法找回当时说了什么

我们常说“信息是资产”,但不加结构的音频文件只是“沉没成本”。关键词搜索+自动转写,不是让你多听录音,而是让你再也不用听完整录音。如果你也想让团队信息流从“碎片化记录”进化成“可查询资产”,不妨试试:用关键词秒查每一次会议的关键对话。你会发现,复盘这件事,其实并没有那么难。

2025-07-16 13:35:40 337

原创 CTO不听录音,但要能随时搜关键词:这是我们选录音转写工具的底线

能被检索,才算沉淀;能被复用,才是资产。录音转写不是AI“炫技”,而是打造“语音知识流动性”的入口。不是能不能听,而是能不能“找”

2025-07-16 13:26:45 442

原创 从语音资产到AI知识:自动摘要是连接信息和智能的桥梁

过去几年我们也试图解决这个问题,起初是:把录音转成文字,就能用了?但真相是:📄 文本太长,不看🔍 没有重点,不能用🧩 无结构,无法管理后来我们才意识到:语音资产化的第一步,不是全文转写,而是结构化摘要。这一步,是信息变知识的起点。更是内容能流通的关键。自动摘要,很多人第一印象是“总结大纲”或者“提要”。音频采集与归档来自会议系统、CRM、远程通话、移动录音等渠道自动转写系统本地或云端模型,如 Whisper、Aliyun ASR、讯飞等,支持多语种和降噪优化摘要生成引擎。

2025-07-11 10:52:14 816

原创 一小时会议变3段摘要,CTO的时间不是用来听回放的

很多团队部署了语音转写工具,却始终觉得“AI提效不明显”。那是因为你只做了第一步:📎“听完写出来” ≠ “提炼出能用的东西”而我们用的是:📌结构化摘要 + 场景化模板把输出标准化,才能让信息跨团队、跨角色被复用、被信任。

2025-07-11 10:23:56 556

原创 我们为什么不再让工程师写会议纪要:AI自动摘要接力信息沉淀

我们做了什么改变?很简单,把工程师从“会议整理”这件事中解放出来。会议录音自动存入共享盘(支持本地+远程上传)系统定时错峰触发转写(避开白天高并发)转写内容自动调用AI模型生成摘要/要点/行动项按照预设模板输出结构化纪要:时间、参与人、讨论要点、结论、负责人、Deadline结果自动同步到项目管理系统 or 知识库用一句话总结就是:转写后不是“全文”,而是“重点”。我们在实践中发现,要想让AI摘要真正用起来,关键不是“能不能写”,而是“写得好不好”。转写+摘要分离式架构。

2025-07-11 10:07:33 776

原创 别再只讲 LLM 和 RAG,团队效率卡死在“转写”这一步

转写后自动生成摘要、关键词、对话角色识别等,整理为结构化JSON或表单。

2025-07-10 15:05:56 378

原创 为什么“用 AI 转写”很简单,“让 AI 流起来”却这么难?

不是“转写难”,是“流转难”。真正拉开团队信息效率差距的,不是工具选得好不好,而是——你有没有让这些工具自己跑起来。

2025-07-10 14:59:00 238

原创 CTO的轻架构策略,构建一套“自己会动”的AI信息流架构

今天,语音内容的价值越来越高,但处理方式却还停留在“人去转”的阶段。而一个能“定时自动转写”的系统,带来的不只是提效:它让信息流不断层;它让 AI 成为流程的一部分;它让你团队每天早上醒来时,知识已经“沉淀”好了。CTO 的轻架构,不一定要重构万象。但你可以从一件简单的事做起:让 AI 智转系统真正“动”起来,从定时预约转写开始。

2025-07-10 13:18:24 665

原创 为什么语音转写这类“小功能”,正在吞噬你团队的系统效率?

别再低估语音这类“非结构化内容”对组织效率的影响。真正的知识管理,从每一条录音的流转开始;真正的信息闭环,从每一个“小流程自动化”开始;真正的企业效率,从一次“无需重复上传下载”的智能转写开始。语音内容能自动转写 → 信息流自动流转 → 决策自动推动执行。这,才是一个企业应有的系统智能。🧠 你们团队现在的语音处理流程是怎样的?是否也遇到协作效率瓶颈?欢迎在评论区交流,我也可以分享我自己团队的实战构建经验和踩过的坑。

2025-07-10 13:13:36 309

原创 企业数字化转型,别让“音频转写”拖住你的信息流 —— 共享盘直转音频,正在成为协作流程的“提速器”

每天有无数的会议、访谈、销售通话、语音汇报正在被“录下来”,但其中 90% 的信息从未被真正使用。而今天,我们在数字化转型中,却还常常忽略了,更忽略了它在流程自动化中的“提速作用”。

2025-07-09 11:03:54 1234

原创 一个小动作,让你的音频资料自动长出“摘要、要点、纪要”:共享盘 X AI重构信息协同链

在大多数企业日常中,录音是一种“高信息密度但低可用性”的数据资产。你或许也经历过这样的场景:开完会,有录音,但没人愿意听一小时音频用户访谈很多,但资料整理永远滞后培训录音堆满硬盘,没人归档,更别说提炼要点表面看是“没人处理”,实际上,是信息流的设计出了问题。没错,不需要上传平台、不用下载转写、不用人工再搬数据,大多数企业在处理录音转写时,流程是这样的:录音 → 本地保存 → 上传平台 → 转写完成 → 下载 → 再上传到团队知识平台。

2025-07-09 08:53:38 398

原创 为什么“上传→转写→下载”这件小事,正在吞噬你团队的信息流效率?

🧑‍🤝‍🧑。

2025-07-08 09:44:05 422

原创 让知识沉淀不再靠“听”:共享盘与 AI 语音转写助力企业构建语义资产库

知识沉淀不该依赖人力记录,而应该依靠系统自动转化。通过将共享盘与AI语音转写能力深度融合,我们迈出了构建语义资产库的关键一步。“不再重复上传下载”不仅是一个功能优化,更是一次团队信息流转效率的飞跃。未来,声音也将像代码一样可管理、可重用、可协作。如你也在打造一套语音数据处理平台或语义内容协作系统,欢迎交流构建经验与技术方案。📬评论区说说你团队是怎么做音频信息管理的?欢迎一起探讨!

2025-07-08 09:16:47 525

原创 从“工具叠加”到“智能涌现”:组织AI协作系统该怎么建?

✅ AI工具叠加,只能带来短期的“使用体验升级”;✅ 构建AI原生协作系统,才能获得长期“组织智能能力”的跃升。AI的最终价值,不是会回答什么,而是能推动组织做成什么。我们正在见证一个时代的转折点:从“员工靠经验推动组织”,到“组织靠智能推动员工”从“人找信息做判断”,到“AI主动发现风险与机会”作为CTO/技术管理者,你的工作不再只是系统稳定、开发迭代,而是要回答一个关键问题:你是否正在构建一套能让组织“自动感知+执行+进化”的AI协作系统?未来,不属于“装了最多AI工具”的企业,

2025-07-07 17:03:02 778

原创 别再盯着工具选型了,组织协作真正的问题在这里|CTO的一线观察

GPT、Agent、多模态、Copilot……新一轮AI热潮涌来,很多企业也跟上了节奏,纷纷把“AI办公”挂上了OKR。你可能也遇到过这样的场景:项目部署了AI助手,但团队协作依然低效;工具用了不少,日报、周报、纪要、方案、流程……依然靠人手“补漏”;系统林立,数据割裂,信息层层递送但任务没人推动,协同像“失速列车”。AI上了,协作没变——问题出在哪儿?

2025-07-07 14:25:55 645

原创 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎

多模态不是万能药,但它是AGI的重要路径。开发者、架构师、CTO需要深入理解其原理与边界,避免“工具先行、场景滞后”的伪创新。未来3-5年,将是多模态应用从“能力验证”迈向“系统重构”的关键窗口。谁能在数据、算法、工程、安全四个维度建立闭环生态,谁就掌握了下一代AI交互入口的主动权。

2025-07-04 15:24:58 714

原创 CTO们正在重构AI战略:不是再上一个大模型,而是打造“智能资产引擎”

AI的未来,不在硅谷,而在车间、病房、课堂、实验室。谁先掌握了“智能资产”的组织能力,谁就能真正完成AI时代的企业跃迁。🧠 这场变革正在发生。如果你也在为AI落地、知识沉淀、流程驱动而思考,欢迎评论区交流观点,也许你比想象中更接近答案。

2025-07-04 09:44:28 550

原创 【AI Agent企业实践】为什么AI办公不提效?从“工具人”到“节奏合伙人”的转变路径

角色识别与任务连接:识别流程中谁在“接棒”,是否“中断”,并对断点提前感知;任务状态自动驱动:结合行为数据,系统级触发任务更新,而非依赖人手动填写;知识流结构化沉淀:不让经验只藏在对话里,而能形成下一任务复用的“AI知识卡”。AI办公真正的价值,从来不在于“你能多快写完日报”,而在于“你的协作流程是否跑得通、节奏稳、任务有人接”。组织效率,不是写得快,而是节奏准。希望这篇拆解对你在企业内部探索 AI 协作系统有所启发。

2025-07-04 09:18:31 535

原创 2025年AI时代:想用AI,这几个核心语言你必须掌握!

随着2025年的到来,人工智能(AI)技术已经深入到各行各业,从智能制造、自动驾驶到医疗健康、金融风控,AI无处不在。对于开发者和技术爱好者来说,掌握AI核心语言,才能真正参与这场数字智能革命。那么,在2025年的AI时代,哪些编程语言才是敲开AI大门的“必备钥匙”呢?本文帮你梳理了最重要的几种语言,助你轻松入门AI开发,抢占未来职场先机!

2025-07-03 10:35:55 471

原创 我们把 AI 应用到了日常协作里,团队协作流转效率提升了近一倍

我们曾以为,“AI办公”是一个概念、一个尝试、一种趋势;但现在我们知道,它是组织管理方式的一次底层进化。部署连宝,不是“追热词”,也不是“抢概念”,而是用一个“可以落地、能打通、带节奏”的AI系统,让我们的组织变得更有秩序、更有节奏感、更高效。对任何一个 CTO 来说,能让团队协作提速而不加班、提效而不内卷,这,就是AI办公最该给我们的价值。

2025-07-03 09:02:34 704

原创 AI距“闭眼交付”为时尚早,程序员的地盘并没有那么容易被颠覆

人人都是程序员”是AI时代最动人的口号之一。但现实远比想象中复杂。最近在 CSDN 和一些开发者社群中,关于大模型 + Prompt 开发、AI原生应用、智能体自动化等话题的讨论非常热。有人用 GPT 快速生成了一个贪吃蛇小游戏,有人用 AI 生成 UI 页面,还能配上接口说明——看起来,我们距离“闭眼交付”仿佛只差一个插件。

2025-06-26 18:11:34 897

原创 一个人也能“开团队Buff”:AI助理正在改变我的工作节奏

AI真正的价值不在于“能做什么”,而在于“什么时候出现在你需要它的地方”。连宝智办助理的魅力就在于:不打扰,不炫技,不教你怎么用,而是悄悄帮你处理掉本可以漏掉、但又非常关键的那一环。这不是什么未来趋势,而是你现在就可以部署的“办公提效基础设施”。宇树王兴兴说“AI时代才刚开始”,但对我们这些已经在用连宝的人来说,AI带来的节奏改变,已经开始了。

2025-06-26 17:33:51 707

原创 连宝:为企业打造本地化、可控、可落地的AI协同助理

在AI驱动的企业协同与管理智能化浪潮中,作为一款软硬一体、可私有部署的企业级AI协同终端,正在为组织开启一种全新的“AI助理”体验。连宝致力于构建,帮助企业在不改变原有系统结构、不依赖云端数据的前提下,引入AI感知能力、流程辅助能力与知识沉淀能力,实现更稳健、更安全、更贴近业务场景的数智化协同。

2025-06-25 16:56:41 729

原创 为什么我们更需要“弱感知AI”?而不是每个人都学Prompt

所谓“弱感知AI”,并不是AI能力弱,而是它的“存在感很弱”,却能自动补位、深度理解上下文,让人几乎无需交互、无需训练,就能用起来。它强调的是:不主动打扰你,但在需要的时候能自动弹出;不要求你发指令,它基于你的行为和场景自动理解意图;不让你“换工作方式”,而是悄悄融入你原本的系统环境;不追求“炫技”,而是聚焦可落地、可持续的组织协同效率。不让AI成为人的负担,而让AI成为管理和执行的“副驾驶”。

2025-06-24 17:28:25 395

原创 从大厂“荒诞味”到 AI “有人味”:我们为什么需要另一种AI智能办公助理?

一个立项流程,三轮评审,五个系统,七个文档版本;项目周会雷打不动,但每次都像复读机,没有推进;需求文档在各类系统中漂流,每次变更都能让开发倒吸凉气;工程师累到凌晨三点上线,第二天还要填日报、写总结、做复盘PPT……这一切,说不上哪里“出错”,但处处都透露着。

2025-06-24 17:04:23 478

原创 组织架构也需“可编程”:技术视角下的AI浪潮与企业结构变革

当企业仍然固守基于岗位编制与层级决策的结构模式时,AI的效率红利反而可能成为“组织熵增”的催化剂。其中不乏传统科技巨头,如亚马逊、微软、Meta,裁撤原因也逐步从“业务调整”演变为“AI取代”。我们应该从“岗位视角”跳出来,从技术架构师的思维看待组织本身。注:已有部分国产平台正在探索这一方向,以“组织智能中枢”为目标推进,体现出“结构进化力”而非单点工具能力。对CIO/CTO而言,下一阶段的工作重心将从“构建系统”转为“构建系统性能力”。只有组织结构“可读、可查、可优化”,变革才可能深入骨髓。

2025-06-23 15:42:33 867

原创 技术团队的时间黑洞:五大管理工具如何被AI重新定义

—剩余精力全消耗在会议转录、需求对齐、跨系统找文档等‘认知断层’场景中。用户指令 → 人工拆解 → 调用工具A → 调用工具B → 结果缝合。自然语言指令 → 意图理解层 → 动态生成原子任务链 → 自动路由工具。技术价值:通过行为模式识别自动守护心流状态,减少62%强制上下文切换。本文将结合行业技术演进,解析AI如何重构五大管理法则的底层逻辑。当技术管理者沉迷于为团队引入单点效率工具时,往往陷入 ​。✅ 部署会议转录 → ✖️ 结论无法自动关联任务系统。​ = 数据不动模型动 × 全链路审计追踪。

2025-06-23 15:15:26 478

原创 本地部署AI,就能解决“AI幻觉”问题了吗?

所谓 AI 幻觉(Hallucination),是指大模型在生成回答时输出看似合理但实则虚假的内容。它不是“模型出Bug”,而是大语言模型天然的概率语言预测机制导致的幻象。对于企业来说,AI幻觉不是学术问题,而是:📉 误导业务决策💬 输出虚假信息,损害客户信任🧾 内容需要人工二次校对,反而增加负担🔁 多轮交互中产生“假信息链式传播”管理者看重的不是AI写得有多花哨,而是它是否能成为可靠、可控的“辅助决策助手”。

2025-06-20 14:33:50 312

原创 从算力焦虑转向数据焦虑:AI部署前CIO该关注什么?

我们已经买了大模型服务,也配置了GPU服务器,可AI还是用不起来。这不是孤例,而是CIO们在AI项目推进中反复遇到的“隐形冰山”——。当AI落地变成“开不了场”的剧,问题往往不在算力,而在于这正是我想说的,。

2025-06-20 10:37:29 1159

原创 开发效率越高,沟通成本越大?用 AI 重构团队协作边界

我们对 AI 的想象,不该止步于写代码。对一个 CTO 来说,能否建立一套“高效信息流通机制”,决定了团队是否具备持续交付能力。在这条路上,像连宝 AI 这样的“协作型 AI 助理”,也许是提升开发力的新变量。如你对团队 AI 协作探索有兴趣,可以交流。我们也在持续迭代试用,欢迎同行实践讨论。

2025-06-19 14:09:57 1050

原创 企业数据治理的下一个跃迁:从“系统整合”迈向“智能协同”

为什么说今天的数据治理,到了“非AI不可”的阶段?在信息化发展的过去十年里,企业投入大量资源建设了 OA、ERP、CRM、MES 等各类系统,产生了海量结构化与非结构化数据。但真正到了要用数据来做决策、协同、管理时,我们常常会发现几个共性问题:❌ 数据“在哪儿”没人知道,文档分散、命名混乱、没有统一知识口径❌ 数据之间“连不通”,来源割裂,系统孤岛,信息重复甚至冲突❌ 数据“看不懂”,分析人员依赖手工处理,提效难,误差高❌ 数据“不能用”,只有 IT 或少数专家能挖掘价值,无法普惠业务人员。

2025-06-19 10:19:17 474

原创 CIO 必读:人工智能深度应用与挑战——连宝AI 赋能企业数字化转型

作为企业数字化转型的核心驱动力,CIO 们必须深刻理解 AI 的潜力,更要正视其带来的复杂性。今天,我将结合连宝AI 的特性,探讨 AI 在企业数字化转型中的深度应用与挑战,并阐述如何通过连宝AI 应对这些挑战,助力企业实现可持续发展。作为 CIO,我们需要以战略眼光,积极拥抱 AI,但更要正视其带来的挑战。选择连宝AI 作为您的数字化转型伙伴,相信您一定能够在人工智能的驱动下,实现企业的可持续发展!作为一家专注于 AI 驱动软件解决方案的企业,连宝AI 致力于为企业提供高效、智能、安全的数字化转型工具。

2025-06-12 09:19:30 279

原创 告别“码农”,拥抱“智绘”:连宝AI 驱动的未来程序员

在这个阶段,Co-Pilot 已经显著提升了我们的编码速度,减少了重复性劳动,但仍然需要我们的大脑和经验来引导。而现在我们看到的“AI 程序员”,例如阿里云通义灵码的“AI 程序员”,正朝着 Auto-Pilot 的方向发展。这意味着 AI 将拥有更高的自主性,能够独立完成更复杂的编程任务,从需求分析到代码实现,甚至问题排查和修复,都可能在无需人类干预的情况下完成。我们相信,连宝AI 凭借其强大的 AI 能力和便捷的使用体验,将成为未来程序员不可或缺的工具。这里要说的,是连宝AI。

2025-06-12 09:06:27 290

原创 AI写代码又上新高度,程序员何去何从

各位码农们,最近感觉有什么不一样? 感觉代码写的效率越来越低,bug 越来越难找,甚至感觉自己像个“搬砖工”,每天都在跟技术债和deadline周旋。 这不仅仅是你的错, 整个行业都在经历一场深刻的变革——AI 正在重塑编程的未来。AI 写代码的浪潮,并非威胁,而是新的机遇 - 连宝AI 助力过去,程序员是代码的“创造者”, 用自己的智慧和技能将抽象的想法转化为可运行的程序。 但现在,AI 已经具备了相当的编码能力, 甚至可以生成符合规范的代码片段, 甚至可以完成简单的功能模块。 这让很多人感到焦虑, 甚至

2025-06-11 09:27:44 384

原创 告别“码农”焦虑,AI辅助开发,效率翻倍!

最近在做一个API接口的开发,需求比较复杂,很多时候需要写大量的重复代码。只需要输入几个关键词,比如“获取用户列表”、“用户登录接口”等,就能快速生成对应的代码片段。连宝AI能够“智能注释与文档生成”,可以根据代码自动生成注释和文档,大大减少了我的文档工作量。连宝AI 并不是一个神奇的“万能”工具,但它在代码生成、文档生成、Bug 预测等方面的能力,确实能够显著提升我的开发效率,减轻我的工作压力。它能帮我进行“智能 Bug 预测与修复建议”,分析代码,预测潜在的 Bug,并提供修复建议。

2025-06-11 09:01:48 548

原创 AI时代,程序员的“护城河”:别被“大模型”骗了,选对工具,才是关键

最近,DeepSeek、文心一言,各种大模型横空出世,感觉整个行业都在被AI“洗脑”。作为一名程序员,我深知,AI不是万能的,它只是一个工具,而我们,依然是解决问题的核心。别被大模型的光环迷惑了,程序员的价值,还在于我们的思维、能力和经验。很多时候,我们需要的不是一个强大的模型,而是能够简化开发流程、提高工作效率的工具。只要我们选择对的工具,不断提升自己的能力,我们就能在AI时代,继续保持我们的竞争力。我们不是在训练模型,而是要用模型解决问题。我认为,最重要的不是“拥抱大模型”,而是。

2025-06-10 09:17:15 133

原创 慌什么“AI 取代初级开发者”?会用它的人,才是未来的中坚力量!

“这个模块的历史逻辑是啥?* **自动生成基础文档:** 接口文档、设计说明、项目报告初稿,AI 快速搭建框架,省下你查格式、凑字数的功夫。* **一键搭建团队技术知识库:** 把散落的 API 文档、部署手册、踩坑记录、最佳实践、祖传代码注释…* **经验永久传承:** 核心成员的经验和决策背景沉淀下来,**新人学习曲线陡降**,避免重复踩坑,更快上手核心任务。* **间接提升编码效率:** 减少低价值文档和沟通时间,把**宝贵的精力留给核心逻辑编写、算法优化和架构思考**。

2025-06-09 18:13:13 295

原创 一文读懂人工智能与大模型(附核心案例)

核心观点:基于机器学习与神经网络的才是现代AI的主流(传统规则系统只是“自动化”而非“智能”)。数据:AI的“养料”高质量:干净、标注准确(如医疗影像标注)多样性:覆盖各种场景(如不同光照下的人脸)代表性:反映真实世界分布(避免数据偏见)程序员痛点:数据清洗、增强、管理(常用工具:Pandas, OpenCV, SQL)模型:AI的“大脑算法”从数据中学习规律(如分类、回归、生成)核心架构:神经网络(CNN, RNN, Transformer)程序员日常:调参侠 ()、炼丹师(训练模型)、模型部署 (Ten

2025-06-09 08:58:42 811

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除