一、别再只讲「大模型能力」了,流程跑不动,再强也白搭
这两年,关于 LLM(大语言模型)和 RAG(检索增强生成)的讨论热得发烫:
-
“我们是不是该构建企业知识中台?”
-
“RAG能不能替代内部知识搜索?”
-
“我们是不是也能上个SaaS接个API搞个AI助理?”
但我得实话实说一句:
你可以花上百万部署 LLM,但你的团队可能还在手动转写会议录音。
是的。
你用着最先进的生成模型,却还在干着最基础的信息提取工作。
二、80%的信息堵点,其实卡在“语音转写”这个最前端
企业知识的起点,从来不是大模型,而是内容获取。
现在大量的信息,特别是非结构化内容,都是从语音产生的:
-
销售拜访录音
-
老板语音指令
-
客户需求访谈
-
内部会议、跨部门汇报
-
培训、讲座、答疑……
这些音频如果不能准确、及时、结构化地转成文本,
后面哪来的语义向量化、RAG建库、知识推荐、AI问答?
说白了,你连“字”都没落下来,还谈什么“模型召回”?
三、手动转写,不是信息处理,是效率浪费
你以为团队协作的痛点是知识管理?
其实不是。
我们在调研中发现:
很多公司会议结束后,最常见的下一句话是:
“谁来转一下录音?”
这看似是个“小流程”,却成了组织效率的黑洞:
-
没人有时间转写
-
延迟一天就没人再看
-
转写内容杂乱无章
-
没有结构化 → 不能归档
-
没有归档 → 不能调用
-
最后信息失效,被埋没,被重复提问
你以为是AI还不够强,
其实是你还在靠人推流程,而不是让流程自动跑。
四、让“转写”融入工作流,才是AI真正开始的地方
所以我们现在强调,不是“部署一个AI”,而是:
构建一个能调动AI、推动信息自动流动的系统。
以“语音内容流”为例,我们是这样落地的:
🧩 1. 共享盘+分类上传
所有录音统一放入共享盘,自动按项目/客户/日期分类命名。
🧠 2. 定时预约转写+错峰处理
每天凌晨1点触发批量转写,避开白天系统高峰,自动调用转写引擎处理音频。
📌 3. 结构化输出+摘要提取
转写后自动生成摘要、关键词、对话角色识别等,整理为结构化JSON或表单。
🔁 4. 集成业务系统:推送+同步+归档
-
日报系统自动抓取当天关键词摘要
-
CRM自动记录客户语音需求
-
内部知识库将内容归档索引
-
搜索引擎实现全文检索 + 语义召回
说白了,我们不只是“用AI”,我们是让AI参与信息流。
五、AI应用的黄金法则:内容要先能“流”,才能“生效”
LLM 和 RAG 再强,也只能处理可供处理的内容。
如果你没把会议录音转写下来、没做好时间调度、没做内容分类、没设权限同步、没放入后续系统,
那你的 RAG 只是在“空气中检索”。
企业知识落地三步走:
-
内容资产化(语音→文本→结构)
-
流程自动化(调度→转写→推送)
-
智能化连接(问答→推荐→调用)
没有第一步,后面全是空谈。
六、不是AI能力不够,而是流程还不配套
你的AI部署再强,也救不了“人肉流程”的协作环境。
团队协作效率的真正分水岭,不在模型规模,而在:
-
你的信息源是不是“即生产、即转化”
-
你的转写是不是自动、错峰、免打扰
-
你的内容是否自动归档、结构化、能被使用
-
你的系统是否有自动调度机制、是否能联动业务系统
别再只盯着「大模型能做什么」,
先想想:「我的信息入口能不能自动流转?」
会议录音别再等人转,
客户访谈别再下班整理,
老板语音别再手抄笔记。
团队效率不是靠AI的智商撬动的,
是靠你把“信息流”设计得足够顺畅。
📌 真正厉害的AI落地项目,从不是模型有多强,而是——
从最小的流程节点,让信息自动跑起来。