非极大值抑制(Non-Maximum Suppression,NMS)是一种常用于目标检测和计算机视觉中的算法,用于去除重叠的边界框,保留最可能是真实目标的边界框。
其核心就是对一组检测框,找出其中属于同一个类别且分数最高的那个框,然后把和这个框的IOU值大于阈值的那些框都删掉。
在NMS中,其实用到了计算IOU的方法,可以参考:面试题-手撕IOU计算
下面是代码:
#include <iostream>
#include <vector>
#include <algorithm>
struct BoundingBox {
float x1, y1, x2, y2;
float score;
int category;
};
bool compareScores(const BoundingBox& a, const BoundingBox& b) {
return a.score > b.score; // 按照置信度分数降序排序
}
float intersectionArea(const BoundingBox& rect1, const BoundingBox& rect2) {
float overlapWidth = std::max(0.0f, std::min(rect1.x2, rect2.x2) - std::max(rect1.x1