面试题-手撕NMS(非极大值抑制)

本文详细介绍了非极大值抑制(NMS)算法在目标检测中的作用,涉及IOU计算、边界框比较和抑制策略,通过代码展示了如何使用NMS来保留最可能的目标边界框。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非极大值抑制(Non-Maximum Suppression,NMS)是一种常用于目标检测和计算机视觉中的算法,用于去除重叠的边界框,保留最可能是真实目标的边界框。

其核心就是对一组检测框,找出其中属于同一个类别且分数最高的那个框,然后把和这个框的IOU值大于阈值的那些框都删掉。

在NMS中,其实用到了计算IOU的方法,可以参考:面试题-手撕IOU计算

下面是代码:

#include <iostream>
#include <vector>
#include <algorithm>

struct BoundingBox {
   
    float x1, y1, x2, y2;
    float score;
    int category;
};

bool compareScores(const BoundingBox& a, const BoundingBox& b) {
   
    return a.score > b.score; // 按照置信度分数降序排序
}

float intersectionArea(const BoundingBox& rect1, const BoundingBox& rect2) {
   
    float overlapWidth = std::max(0.0f, std::min(rect1.x2, rect2.x2) - std::max(rect1.x1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值