UCB促使智能体探索那些具有较高不确定性但潜在回报也可能较高的路径,随着时间推移逐渐减少不确定性并集中于最佳策略。
下面是一个ε-贪婪策略的简单实现示例,展示了如何在选择动作时平衡探索与利用:
import random
def epsilon_greedy(Q_values, epsilon):
"""
ε-贪婪策略选择动作
:param Q_values: 各个动作的价值
:param epsilon: 探索概率
:return: 选择的动作
"""
if random.uniform(0, 1) < epsilon: # 探索
return random.choice(range(len(Q_values)))
else: # 利用
return Q_values.index(max(Q_values))
- 🎮 复杂环境中的强化学习应用
在面对更复杂的环境如3D游戏、自动驾驶模拟或工业自动化等场景时,强化学习面临着更高级别的挑战。这些环境的特点是高维度的观测空间、连续动作空间以及复杂的奖励机制。为了解决这些难题,需要采用更先进的技术和策略。
使用OpenAI Gym与TensorFlow解决复杂问题
OpenAI Gym提供了丰富的环境供研究者测试不同的强化学习算法。在处理更复杂的环境时,通常需要设计深层神经网络来处理高维输入,并采用连续动作空间处理策略,如DDPG(Deep Deterministic Policy Gradient)或TD3(Twin Delayed Deep Deterministic Policy Gradient)。
# 示例:使用TensorFlow和DDPG解决复杂的机器人控制任务
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow