多个连续区间的最多交集个数判定问题

4d13af213a0440b4b0d16cebaa892226.jpg

 算法

1. 对区间端点左值排序后获得各个区间两端点编号,比如L-3、R-2分别表示区间3的左端点、区间2的右端点。然后,对区间端点值排序。比如对区间[0,1],[0.3,0.7],[0.5,2]排序后为0,0.3,0.5,0.7,1,2其编号排列为L-1,L-2,L-3,R-2,R-1,R-3。

2. 计算编号排列中相邻两点所属区间个数:从左向右起始个数为0,遇到L加1,遇到R减1。以L-1,L-2,L-3,R-2,R-1,R-3为例,所属区间个数数列为0,1,2,2,1,0。

3. 所属区间个数数列的值N为区间存在与其它N个区间有共同交集。

 

 

### 整线性规划问题中的位运算应用 #### 位运算在整线性规划中的作用 在解决整线性规划(ILP, Integer Linear Programming)问题时,位运算能够提供一种高效的方法来表示和操作二进制决策变量。通过将多个布尔变量打包到单个整中,可以显著减少内存占用并加速计算过程[^1]。 对于某些特定类型的约束条件或目标函而言,利用按位逻辑操作可以直接对这些紧凑形式的据执行复杂的组合判断而无需展开成独立的方程组。例如,在资源分配、调度安排等领域内常见的互斥关系表达式可以通过简单的`AND`, `OR`, 和 `XOR`指令完成验证工作;同样地,“至少有一个”这样的存在性命题也可以借助于`|`(或)运算符轻松实现[^2]。 #### 实现方法 下面给出一个简单例子展示如何运用Python内置支持的位级特性构建基本框架: 假设有一系列任务需要指派给不同工人完成,并且每个员工最多只能承担一项职责,则可以用一组长度固定的bit串代表所有可能的选择方案之一。其中每一位对应着某个人员是否被选中参与当前项目的状态标记(0 或者 1)。此时如果想要检查两个候选解之间是否存在冲突情况(即是否有重复上岗现象),只需将其对应的编码相与(`&`)即可得到交集部分所指示的位置集合——只要结果不全为零就说明出现了重叠情形[^3]。 ```python def check_conflict(solution_a: int, solution_b: int) -> bool: """Check if two solutions have any overlapping assignments.""" overlap = solution_a & solution_b return overlap != 0 ``` 另外值得注意的是,由于计算机内部是以补码的形式存储负值的缘故,因此当涉及到范围限定或是边界判定的时候应当特别小心处理符号扩展带来的影响。比如要获取某个区间内的最大最小值时,应该先确保两端点均处于合法范围内再进行比较运算;而对于绝对值取反这类特殊需则往往需要用到额外辅助寄存器保存临时状态以便后续恢复原样[^4]。 #### 应用场景 - **背包问题**:确定哪些物品放入容量有限的容器里可以获得最高价值总和; - **图论模型下的最短路径搜索**:记录节点访问历史防止循环遍历造成死锁; - **电路设计自动化工具**:快速评估多种布线策略优劣程度从而挑选出最佳布局选项; - **密码学领域密钥生成机制**:基于大素分解难题构造高强度加密体系保障信息安全传输。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值