在大模型掀起的新一轮 AI 革命中,技术栈更新得飞快,岗位薪资一路走高,门槛也随之水涨船高。你是不是也有过这样的时刻:
- 面试官一张口就是“除了 PPO 和 DPO,还有哪些进行偏好对齐的算法?它们各是怎样进行优化的?”。你一脸懵!
- 知道 RLHF 是个大热的术语,但 DPO、GRPO 又是什么鬼?到底怎么答才显得自己不是在背八股文?
- ChatGPT、DeepSeek、Kimi 天天用,但面试时怎么把“用”变成“懂”?
万众期待的《百面大模型》来了!这不只是一本面试刷题书,更是一次知识体系的重建,助你在技术的深水区突围。
这份完整版的《百面大模型》已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
一本书,攻克整个大模型面试体系
和堆砌题目的传统面试宝典不同,这本《百面大模型》不仅有题,更有“体系”。它是以“面试高频真题”为主线,把大模型领域的核心知识图谱串了起来,既能刷题,也能系统梳理大模型知识点。
作者从一线实践中精选了大约 100 道典型真题,覆盖市面上 95% 的高频考点,这些都是开发者在学习和面试中绕不开的重要内容。
而且每道题都不是简单丢给你一个答案,而是采用问答的方式,讲透开发者最容易卡住、最容易混淆的地方。题目还贴心地标了难度等级(2星到5星)和对应的页码,方便你按图索骥,精准复习,高效查漏补缺。
读这本书,你能感受到那种“前辈带你避坑”的贴心感。它不是高高在上的教学,而是真正站在读者的视角,用实用、有序、易吸收的方式,带你厘清大模型面试背后的逻辑和套路。
总之,如果你不想再“乱学一气”,也不想面试被问得一脸懵,强烈建议你从读这本书开始!
全书共 13 章,覆盖内容包括:
- 从预训练到微调:讲清楚了 MoE、PEFT、SFT、RLHF、DPO、GRPO 背后的方法论和工程实现;
- 从架构到推理优化:系统介绍 FlashAttention、PagedAttention等关键提效技术;
- 从模型评估到对齐技术:分析大模型自动化评估、对抗测试、PPO/DPO 调优;
- 从 RAG 到智能体:涵盖 RAG 的全流程实操、XAgent/AutoGen 框架的原理与场景;
- 从 DeepSeek 案例到国产大模型解析:解读 MLA 架构,分析其如何从“万卡训练”走到推理落地。
每一章内容,都会从工程实践、源码讲解、真实面试经验几个方面来阐述,是一本能让你“真正答出逻辑和深度”的大模型面试参考书。(附上本书的目录供大家参考)
为何说它“面试有效”?因为它来自真实面试现场**!**
书里的这些面试题,基本都是真实的大厂现场题,不是随便拼凑的练习题。作者团队在 2024 年秋招期间,特地选了 3 位硕士实习生,把书中的题目作为训练材料,系统刷完题后去参加头部大厂的面试——结果他们都拿到满意的 Offer!
更厉害的是,书里不少题目和真实面试题几乎一字不差,命中率超高,真的很“对口”。
这套题不是靠“编”出来的,作者本身就是经验丰富的一线面试官,知道哪些知识点会反复被问,也知道面试官到底在考察什么。所以你看到的不是死板的“标准答案”,而是结合出题逻辑、思维方式给出的系统拆解。
这本书更像是一次知识结构的重构过程,不是让你死记硬背,而是让你真正理解“怎么被问、该怎么答”。
相比于死记硬背的对答,这本书做到了三点:
- “讲原理”:每道题不仅都给出答案,更是从模型、算法、训练流程等角度深入拆解;
- “讲差异”:DPO vs PPO?LoRA vs PEFT?FlashAttention vs PagedAttention?都给你对比分析;
- “讲趋势”:大模型领域新兴解决问题的方法或者是对已有方法的演进,背后的动因和选择路径都有详解。
从知识本质出发,不仅仅是面试题
很多人觉得自己“面试经验不足”,但其实这只是表象,背后真正的原因往往是:对底层逻辑的掌握不牢。作者正是意识到了这一点,才决定换一种方式,从知识本质出发,把大模型里那些关键又容易忽略的知识点,转化成一道道清晰的问答题。
这不是简单地刷题,而是通过提问与回答,帮助你一点点把底层打牢。
所以说,这本书不只是一本以面试为导向的习题集,更像是一个系统梳理大模型知识的“小型知识库”。对开发者来说,它提供了一种全新的复习方式,也是一种更本质、更有效的学习路径。
(注:截图仅展示问答过程,该题目还有分析过程,篇幅原因未能一一展示)
如果你是刚入门大模型领域的学习者,这本书可以作为你的随身参考,有不懂的地方,翻到对应章节,往往就能豁然开朗;
如果你是技术管理者,它将是一份清晰的提纲式读物,帮你快速把握大模型的关键技术问题,更好地跟进行业发展,合理评估和管控技术风险;
而如果你已经在一线从事大模型相关工作,这本书同样值得一读,它汇总了2023 到 2024 年的重要技术进展和核心要点,是一本不错的查漏补缺工具书。
如果你是刚上手的初学者,或者已经有一定经验的中高级选手,想更顺利地阅读本书中的代码内容,建议你具备基本的自然语言处理知识,同时也需要掌握一定的 Python 编程基础,最好还有一些 PyTorch 的使用经验。
当然,如果你对其中某些知识点还不熟悉,也不用担心——书中的讲解尽量做到通俗易懂,代码配有详细注释,边读边查边实践,同样能跟得上节奏。
作者简介
包梦蛟,北京航空航天大学硕士,美团北斗计划高级算法专家,负责大众点评大模型应用落地开发,曾获得 Kaggle Grandmaster 称号、KDD CUP 2024 冠军,业余时间撰写知乎专栏和公众号“包包算法笔记”,全网关注数 5 万+。
刘如日,北京航空航天大学硕士,研究兴趣为机器学习与自然语言处理。曾以第一作者身份发表顶会论文并多次在顶会竞赛中取得冠军等优异成绩。现于美团从事大模型相关技术研究与产业应用。
朱俊达,北京航空航天大学硕士,研究兴趣为大模型架构优化方向,有多家大厂实习经历,发表了多篇大模型相关论文。
这份完整版的《百面大模型》已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】