大模型面试问题记录~~持续更新中

1.AI解决方案


1、您在大数据应用或者人工智能项目具体工作内容是什么?能否独立完成整个方案
2、哪些项目或者解决方案是独立完成的?
3、方案设计、文档编写、PPT宣讲能力如何?
4、对大模型应用了解多少?关注过哪些场景

我的回答:

1、您在大数据应用或者人工智能项目具体工作内容是什么?能否独立完成整个方案
可以独立完成整个方案

主要工作内容是:
a.大模型应用架构设计
基于LangChain构建高扩展性AI应用框架,设计动态RAG管道(Query重写/多路召回/混合检索),支撑智能问答、Text2SQL等场景.
开发AutoGen多智能体协同系统,实现自动化营销、API工具语义网关等复杂任务;

b.模型优化与低成本部署
主导7B~13B级大模型微调落地,应用QLoRA+4-bit量化技术,单卡显存消耗优化至12GB内(3090显卡可运行),降低企业微调成本;
设计DeepSeek模型私有化部署方案,完成GPU资源预算评估与推理加速优化,降低服务延迟;

c.AI工程化与效能提升
搭建HuggingFace Transformer模型服务化管道,构建企业级ChromaDB向量数据库服务,通过Embedding模型调优与混合索引策略;

d.技术决策与知识沉淀
主导LLM技术选型,编写《私有模型部署成本指南》《RAG系统设计规范》等技术文档;
推动Java技术栈与AI系统融合; 


2、哪些项目或者解决方案是独立完成的?

a.智能营销Agent系统
该系统可以自动的维护有潜在意向的微信客户,像真人一样给客户介绍产品信息,提高转化率...

b.卡券后端智能查询系统
在传统的后端管理系统中增加自能查询模块,大大降低管理系统的开发工作量;


3、方案设计、文档编写、PPT宣讲能力如何?
感觉,都还行吧....不过做好看的ppt有点困难....


4、对大模型应用了解多少?关注过哪些场景
我主要关注的是智能体方面的,
比如智能营销(健康,旅行,保险,驾校等),智能问答(升学,法律,政策等)

2.下面3项你会几点

•精通PyTorch生态,掌握HuggingFace/ColossalAI等工具链
• 深入理解Transformer/BERT/GPT等架构及Attention机制
• 具备8卡(或者多卡)以上分布式训练调优经验,熟悉NCCL通信优化

我的回答:

最后一点只是了解过,知道有这些,没有实际调优经验
前2点,都能熟练应用

3.这几项会哪几项

一,知识问答不依赖训练提示词,依靠大模型语义增强理解,同时解决幻觉和乱回答现象,语义增强有效避免提示词盲区。是否能解决,或者会做。因为我们做的不是推荐算法逻辑,而是自主规划决策算法逻辑,所以依靠本地化词库和结构化数据以及提示词是无法满足需求的,达不到目的和效果。
二,AI机器视频语音对话,要实现双攻,也就是AI机器人要实时倾听实时理解判断,拟人化的实时沟通,包括打断和追问。是否能解决。
三,是否有多模态的项目实际操作经验。

我的回答:

第一点,知道大体方向怎么做;
第二点:没做过
第三点:只是自己做过demo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值