这是我从事用户画像构建工作的第68天:
-
公司新产品上线,用户是谁?优先开拓哪类用户?
-
产品上线功能是否满足目前用户需求?
-
都在哪些渠道投放广告,才能触达直接用户?
图片来自网络
目前,大部分公司的用户运营人员都像我一样,在构建用户画像的时候都是通过数据统计,然后找出一些标签。直到领导安排了一次任务:在线课程 | 知识兔
“我们这次的产品是公司的重点营销品类,想要分析一下目前的产品用户画像,你们部门下周汇报一下。”
我摇头晃脑的说:“这不难,我们只要根据用户性别、年龄、喜好、消费习惯……”按照这种方式,打了5万个用户标签。一周后,得意洋洋的向领导汇报。
· 我们的用户男女占比7:3
· 北上广深一线城市占比30%,二线城市50%,三四线城市占比20%
· 用户购买以往AI产品占比20%,B产品占比10%
· 忠实用户……
当我孜孜不倦的汇报的时候,看到业务部门白眼抛来,然后一回头,与领导四眼相对,发现了一丝丝的寒意。
01
混淆过去与将来
只能被现实无情的打脸
领导沉默不语,业务部门的人说,你的这些数据我们早知道了,而且你说的“忠诚用户”标签这栏,后续也没有其他购买动作了。而且A产品爱好者这个标签,我们后续推产品的时候也并没有购买。
这是为什么?因为你在做用户画像的时候,混淆了过去与未来,你往往对着一堆过去发生的行为贴一堆标签,对未来却毫无预测的概念。所以,这样产生的数据对业务毫无帮助。
图片来自网络
脱离业务实际的用户画像标签毫无用处。
02
会用户画像模型体系搭建
在未来会越来越吃香
这时,我请教了多年用户分析工作经验的师兄,他的思路是这样的,首先进行目标分析,然后运用模型进行体系构建,最后进行画像建立。
I:对基础数据进行收集,然后对这些数据进行分析、加工,构建可视化模型,然后抽象出用户标签
II:用RFM模型来进行用户分层,以行为标签做主题逻辑,以此来进行精细化加工,将标签管理化
III:将标签结果进行计算,数据可视化展示
下面是美团真实使用中的RFM模型:在线课程 | 知识兔
图片来自于网络
用户画像相关工作,是互联网公司的中心职位,因为互联网时代,用户是天下,谁获得用户,谁将掌握话语权,比如腾讯、阿里巴巴、百度等,都是典型的例子。
而且,用户分析相关工作也是薪资诱人。
图片来自于网络
如果你想要从事互联网公司用户分析类岗位,我建议你尽快提升自己,增强自己的用户画像构建能力。