matble的K-means聚类,函数参数解释

本文介绍了使用Matlab的litekmeans函数进行K-means聚类的方法,详细解析了函数参数,包括数据矩阵X、簇数量k以及可选参数如'MaxIter'(最大迭代次数)等。示例展示了如何设置不同参数并获取聚类结果、中心点、收敛状态等信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

function [label, center, bCon, sumD, D] = litekmeans(X, k, varargin)

litekmeans K-means聚类,通过matble编写的矩阵加速运算

X,k:    将N×P数据矩阵X中的点划分为K个簇。 N为点个数,p为点的特征个数

 label = litekmeans(X, K)
  label: 此分区群集中, 点到群集质心的群集内总和最小化所有距离的总和。 X的行对应于点,列对应于变量。 KMEANS返回             包含每个点对应的聚类索引,即N×1的矢量标签。

 [label, center] = litekmeans(X, K) 
   center:返回K个聚类质心位于K-by-P​​矩阵中心的位置。

 [label, center, bCon] = litekmeans(X, K) 
    bCon: 返回bool值bCon   表示迭代是否收敛。  

[label, center, bCon, SUMD] = litekmeans(X, K) 
    sumD:在1×K向量中的,每个聚类其中点到该质心距离的群内总和 sumD。

 [label, center, bCon, SUMD, D] =litekmeans(X, K)
      D: 来自每个点到每个质心的距离,总共n个点,k个质心,所以D为nXk的矩阵.

[ ... ] = litekmeans(..., 'PARAM1',val1, 'PARAM2',val2, ...) specifies

  指定可选的参数名称/值对来控制KMEANS使用的迭代算法。 参数是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值