pytorch自带的模型剪枝工具prune的使用

本文介绍了如何使用torch.nn.utils.prune对PyTorch模型进行L1结构化剪枝,展示了剪枝后的模型结构变化,以及实际运行中可能的运算影响。尽管剪枝减少了参数数量,但并未明显提高运算效率,更多是理论上的轻量化。

torch.nn.utils.prune可以对模型进行剪枝,官方指导如下:

https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

直接上代码

首先建立模型网络:

import torch
import torch.nn as nn
from torchsummary import summary
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class SimpleNet(nn.Module):
    def __init__(self, num_classes=10):
        super(SimpleNet, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=3, stride=1, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2)
        self.conv3 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=3, stride=1, padding=1)
        self.conv4 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=3, stride=1, padding=1)
        self.fc = nn.Linear(in_features=16 * 16 * 24, out_features=num_classes)
    def forward(self, input):
        output = self.conv1(input)
        output = nn.ReLU()(output)
        output = self.conv2(output)
        output = nn.ReLU()(output)
        output = self.pool(output)
        output = self.conv3(output)
        output = nn.ReLU()(output)
        output = self.conv4(output)
        output = nn.ReLU()(output)
        output = output.view(-1, 16 * 16 * 24)
        output = self.fc(output)
        return output
model = SimpleNet().to(device=device)

看一下模型的 summary

summary(model,

模型剪枝是一种压缩神经网络模型的技术,它可以通过去掉一些冗余的连接和神经元节点来减小模型的大小,从而降低模型的存储和计算开销,同时还可以提高模型的推理速度和泛化能力。 PyTorch是一种非常流行的深度学习框架,它提供了丰富的工具和函数,方便我们实现模型剪枝。下面是使用PyTorch实现模型剪枝的步骤。 1. 导入必要的库和模块 ```python import torch import torch.nn as nn import torch.nn.utils.prune as prune ``` 2. 定义模型 这里以一个简单的全连接神经网络为例: ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 10) def forward(self, x): x = x.view(-1, 784) x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x ``` 3. 添加剪枝方法 ```python def prune_model(model, prune_method=prune.L1Unstructured, amount=0.2): """ 对模型进行剪枝 :param model: 待剪枝模型 :param prune_method: 剪枝方法,默认为 L1Unstructured,也可以是 L2Unstructured 或者 RandomUnstructured 等 :param amount: 剪枝比例,即要去掉的参数的比例 """ # 对模型进行遍历,找到所有可以进行剪枝的层 for module in model.modules(): if isinstance(module, nn.Linear): prune_method(module, name="weight", amount=amount) # 对 weight 进行剪枝 ``` 4. 加载数据集和训练模型 这里不再赘述,可以参考 PyTorch 官方文档。 5.模型进行剪枝 ```python # 加载训练好的模型 model = Net() model.load_state_dict(torch.load("model.pth")) # 打印模型大小 print("Before pruning:") print("Number of parameters:", sum(p.numel() for p in model.parameters())) # 对模型进行剪枝 prune_model(model) # 打印剪枝后的模型大小 print("After pruning:") print("Number of parameters:", sum(p.numel() for p in model.parameters())) # 保存剪枝后的模型 torch.save(model.state_dict(), "pruned_model.pth") ``` 6. 评估和测试模型 同样可以参考 PyTorch 官方文档。 以上就是使用PyTorch实现模型剪枝的基本步骤,可以根据具体的需求进行调整和改进。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值