Python数据分析库 Pandas 十个高频操作

1. 读取数据

import pandas as pd
df = pd.read_csv('data.csv')
  • 也可以使用 read_excelread_jsonread_sqlread_parquet 等。


2. 查看数据基本信息

df.head()        # 查看前5行
df.tail()        # 查看后5行
df.info()        # 数据类型与缺失信息
df.describe()    # 数值型列的统计摘要

3. 选择行列

df['列名']                   # 选择单列
df[['列1', '列2']]           # 选择多列
df.iloc[0:3]                # 通过位置选取行
df.loc[df['列名'] > 100]     # 条件筛选

4. 缺失值处理

df.isna().sum()             # 每列缺失值数量
df.dropna()                 # 删除含缺失值的行
df.fillna(0)                # 填充缺失值

5. 数据排序

df.sort_values(by='列名', ascending=False)

6. 新增列 / 修改列

df['新列'] = df['列1'] + df['列2']         # 新增列
df['列1'] = df['列1'].apply(lambda x: x*2)  # 修改列

7. 分组聚合(groupby)

df.groupby('列名')['数值列'].mean()          # 求平均
df.groupby(['列1', '列2']).agg({'值': 'sum'})  # 多重分组

8. 去重

df.drop_duplicates()             # 删除重复行
df.drop_duplicates(subset='列名')  # 根据某列去重

9. 合并与连接

pd.concat([df1, df2])                # 纵向拼接
pd.merge(df1, df2, on='id')          # 横向关联(类SQL的join)

10. 导出数据

df.to_csv('output.csv', index=False)
df.to_excel('output.xlsx', index=False)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值