[R][源码]EM算法实现基于高斯混合模型(GMM)的聚类

本文介绍了一种使用EM算法实现基于高斯混合模型(GMM)的聚类方法。实验中,通过生成来自两个二维高斯分布的1000个数据点进行聚类。在R语言中,比较了使用mclust包和自编代码的聚类结果,两者在聚类数量和分布参数上基本一致,表明自编代码的EM算法能够有效且准确地完成GMM聚类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要求:用EM算法实现基于GMM的聚类算法。



一、实验数据

参考[1] 3.3.2章节。由两个二维高斯分布混合生成1000个数据,混合系数分别是0.4、0.6,均值和方差如下:

mu1=[-2,-2]

sigma1=[1.2, 0.5, 0.5, 1]

mean2=[2,2]

sigma2=[1.5, 0.7, 0.7, 1]

二、实验过程、结果与分析

2.1 数据散点图

 

2.2 用mclust包实现

R语言自带mclust包可对混合高斯分布实现EM聚类,cluster1有391个数据,cluster2有609个数据。

2.3 我的实现

算法迭代47次后收敛,cluster1中有387个数据,cluster2中有613个数据。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值