ego-planner论文阅读笔记

ESDF: Euclidean Signed Distance Field
EGO: ESDF-free Gradient-based lOcal planning framework

摘要

通过比较碰撞轨迹与无碰撞引导路径,得到惩罚函数中的碰撞项
仅仅存储遇到的新障碍
如果某段轨迹动力学不可行,则延长该段轨迹分配的时间
异性曲线拟合算法——在保持原有轨迹形状的情况下降低轨迹的阶数

介绍

基于梯度的规划器依赖预构建的 ESDF 地图,并且这个 ESDF 计算占据了构建局部规划总处理时间的 70%

构建 ESDF 的两种方法:全局增量式和批量本地计算
两者都不关注轨迹本身,做了很多无用计算

EGO-Planer主要由基于梯度的样条曲线优化器和细化过程组成。

样条曲线优化器:
碰撞项的构成通过比较障碍物内的轨迹与无碰撞的引导路径
然后用梯度信息将碰撞到障碍物的轨迹拉出障碍物
从而算法只需要计算碰撞处的障碍物梯度即可。

细化过程:
当某段轨迹动力学不可行时,激活细化过程,即增大该轨迹分配的时间。
在平衡可行性和拟合精度的同时,生成了一个新的B样条,用于拟合先前的动态不可行。

在轴向和径向上拟合的准确性惩罚并不一样,以提高模型的鲁棒性。

相关工作:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值