(1) pytorch中的L2和L1正则化,自定义优化器设置等操作
https://ptorch.com/docs/1/optim
在pytorch中进行L2正则化,最直接的方式可以直接用优化器自带的weight_decay选项指定权值衰减率,相当于L2正则化中的λ \lambdaλ,也就是:
中的λ \lambdaλ。但是有一个问题就是,这个指定的权值衰减是会对网络中的所有参数,包括权值w ww和偏置b bb同时进行的,很多时候如果对b bb进行L2正则化将会导致严重的欠拟合1,因此这个时候一般只需要对权值进行正则即可,当然,你可以获取模型中的所有权值,然后按照定义的方法显式地进行处理,得到一个正则损失之后在交给优化器优化,这是一个通用的方法。但是其实还有更为简单的方法,同样在优化器中提供了。
torch.optim中包含了很多现成的优化器,包括SGD,Adadelta,Adam,Adagrad,RMSprop等,使用它很简单,你需要传入一个可迭代的参数列表(里面必须都是Variable类型的)进行优化,然后你可以指定一些优化器的参数,如学习率,动量,权值衰减等。例子如:
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9,weight_decay=1e-5)
optimizer = optim.Adam([var1, var2], lr = 0.0001)
此外,优化器还支持一种称之为Per-parameter options的操作,就是对每一个参数进行特定的指定,以满足更为细致的要求。做法也很简单,与上面不同的,我们传入的待优化变量不是一个Variable而是一个可迭代的字典,字典中必须有params的key,用于指定待优化变量,而其他的key需要匹配优化器本身的参数设置。我们看一下例子:
optim.SGD([
{'params': model.base.parameters()},
{'params': model.classifier.parameters(), 'lr': 1e-3}
], lr=1e-2, momentum=0.9)
其中,我们可以看到,传入的list中有两个字典,每一个都是一个独立的参数组,其中每一组中都有一个paramskey,用于指定需要训练的参数,如model.base.parameters()就是base网络中的所有参数,尔后,也可以在每一组内单独设置学习率,权值衰减等。如果不显式地在组内设定,那么就会继承优化器的全局参数,如lr=1e-2,momentum=0.9等,如果组内指定了,那么全局的将不会覆盖掉组内的参数设置。
这样我们就可以灵活的给每一个子网络设定不同的学习率,权值衰减,momentum了,我们也可以给权值设定权值衰减,而不作用与偏置,如:
weight_p, bias_p = [],[]
for name, p in model.named_parameters():
if 'bias' in name:
bias_p += [p]
else:
weight_p += [p]
# 这里的model中每个参数的名字都是系统自动命名的,只要是权值都是带有weight,偏置都带有bias,
# 因此可以通过名字判断属性,这个和tensorflow不同,tensorflow是可以用户自己定义名字的,当然也会系统自己定义。
optim.SGD([
{'params': weight_p, 'weight_decay':1e-5},
{'params': bias_p, 'weight_decay':0}
], lr=1e-2, momentum=0.9)
Update 2018-12-12:
有朋友说博文的方法好像报错,我这里又试了下,并没有问题。环境是pytorch 1.0.0,jupyter notebook,ubuntu 16.04。完整测试代码如下:
import torch
import torch.nn as nn
import numpy as np
## build model
class net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(100,50)
self.fc2 = nn.Linear(50,1)
self.relu = nn.ReLU(inplace=True)
def forward(self, inputs):
layer = self.fc1(inputs)
layer = self.relu(layer)
layer = self.fc2(layer)
return layer
## analoy inputs and labels
inputs = np.random.normal(size=(8,100))
inputs = torch.tensor(inputs).float()
labels = np.ones((8,1))
labels = torch.tensor(labels).float()
## update the weights and bias with L2 weight decay
n = net()
weight_p, bias_p = [],[]
for name, p in n.named_parameters():
if 'bias' in name:
bias_p += [p]
else:
weight_p += [p]
criterion = nn.MSELoss()
logit = n(inputs)
loss = criterion(input=logit, target=labels)
opt = torch.optim.SGD([{'params': weight_p, 'weight_decay':1e-5},
{'params': bias_p, 'weight_decay':0}],
lr=1e-2,
momentum=0.9)
## update
opt.zero_grad()
loss.backward()
opt.step()
请各位试试,谢谢。
Reference
[1]. PyTorch Documentation -> torch.optim
---------------------
作者:FesianXu
来源:CSDN
原文:https://blog.csdn.net/LoseInVain/article/details/81708474
版权声明:本文为博主原创文章,转载请附上博文链接!
(2) Adding L1/L2 regularization in PyTorch?
Following should help for L2 regularization:
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5)
(3) pytorch在不同的层使用不同的学习率
有时候我们希望某些层的学习率与整个网络有些差别,这里我简单介绍一下在pytorch里如何设置,方法略麻烦,如果有更好的方法,请务必教我:
首先我们定义一个网络:
class net(nn.Module):
def __init__(self):
super(net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 1)
self.conv2 = nn.Conv2d(64, 64, 1)
self.conv3 = nn.Conv2d(64, 64, 1)
self.conv4 = nn.Conv2d(64, 64, 1)
self.conv5 = nn.Conv2d(64, 64, 1)
def forward(self, x):
out = conv5(conv4(conv3(conv2(conv1(x)))))
return out
我们希望conv5学习率是其他层的100倍,我们可以:
net = net()
lr = 0.001
conv5_params = list(map(id, net.conv5.parameters()))
base_params = filter(lambda p: id(p) not in conv5_params,
net.parameters())
optimizer = torch.optim.SGD([
{'params': base_params},
{'params': net.conv5.parameters(), 'lr': lr * 100},
, lr=lr, momentum=0.9)
如果多层,则:
conv5_params = list(map(id, net.conv5.parameters()))
conv4_params = list(map(id, net.conv4.parameters()))
base_params = filter(lambda p: id(p) not in conv5_params + conv4_params,
net.parameters())
optimizer = torch.optim.SGD([
{'params': base_params},
{'params': net.conv5.parameters(), 'lr': lr * 100},
{'params': net.conv4.parameters(), 'lr': lr * 100},
, lr=lr, momentum=0.9)
---------------------
作者:BinWang-cvlab
来源:CSDN
原文:https://blog.csdn.net/wangbin12122224/article/details/79949824
版权声明:本文为博主原创文章,转载请附上博文链接!