如何理解Attention中的K,Q,V

本文介绍了Transformer中的Attention机制,特别是Self-Attention的概念,详细阐述了Key,Query,Value的角色。通过一个简单的PyTorch实现展示了如何从输入张量生成K,Q,V,并计算Attention。作者的目标是进一步理解MultiheadAttention。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近自学transformer阅读经典论文《Attention Is All You Need》时对其中的符号表示以及具体计算过程有点小疑惑,多方查阅后整理出本文作为笔记以供参考,若有错误敬请斧正。

论文中的公式:

K,Q,V的含义

K: Key;

Q: Query;

V: Value;

基本原理:给定一个 query,计算query 与 key 的相关性,然后根据query 与 key 的相关性去找到最合适的 value。

Self-Attention

设输入张量 (其中n为样本个数,d为模型维度数量,注意在X,Q,K,V等矩阵中,一行表示一个样本,每一列表示样本的每一个维度

则在Attention(Q, K, V) 中,K,Q,R为输入张量X通过Linear mapping变换到Q,K,V的特征空间中的张量,即:

,

,

.

(Linear层权重W初始化后由梯度下降自动更新)

以下为单头self-attention的简单实现(具体实现见https://blog.csdn.net/beilizhang/article/details/115282604

import torch

n = 3
d_model = 4
d_k = 3
d_v = 3

torch.manual_seed(1)#设定随机数种子
x = torch.rand(n,d_model)
print(x)#查看输入张量(每行为一个样本,每列为一个维度)
Wq = torch.rand(d_model,d_k)#随机初始化权重
torch.manual_seed(2)
Wk = torch.rand(d_model,d_k)
torch.manual_seed(3)
Wv = torch.rand(d_model,d_v)

K = x @ Wk # @为矩阵乘法,相当于torch.mm
Q = x @ Wq
V = x @ Wv

Attention = torch.nn.functional.softmax((Q @ K.T)/d_k**0.5, -1) @ V
#Attention 每一维输出,相当于是所有输入序列样本对应维度的加权和

未来目标:理解mutihead attention并手动复现。

相关参考:

  1. https://blog.csdn.net/yangyehuisw/article/details/116207892

  1. https://blog.csdn.net/weixin_48167570/article/details/123832394

  1. https://blog.csdn.net/weixin_36896856/article/details/103471086

  1. 李宏毅nlp课程

<think>好的,用户问的是怎么理解Self Attention里的QKV。之前已经介绍过大模型和Transformer的基本原理,其中提到了自注意力机制和QKV矩阵。现在需要深入解释QKV,可能需要从背景开始,逐步展开。 首先,用户可能对自注意力机制有一定的了解,但QKV的具体作用可能还不清楚。需要明确QKV的来源:它们是输入向量通过线性变换得到的三个矩阵。然后要解释每个矩阵的作用,比如Q代表查询,K代表键,V代表值。这里可能需要类比信息检索中的查询和键值对,帮助用户建立直观理解。 接下来,需要解释Q和K的点积计算相似度,然后缩放和SoftMax得到权重,最后与V相乘得到加权和。这个过程需要分步骤说明,可能用数学公式辅助,但要注意使用正确的LaTeX格式,如用户之前的系统指令所示。例如,公式应该用$$...$$,行内用$...$。 用户可能的疑问包括:为什么需要三个矩阵而不是直接用输入?为什么要缩放?多头注意力中QKV如何拆分?需要逐一解答这些潜在问题。同时,要避免使用过于专业的术语,保持解释的通俗性。 可能还需要举例说明,比如句子中的某个词如何通过QKV关注其他相关词,例如“它”指代动物时,模型如何通过注意力找到正确的名词。这样的例子能帮助用户理解实际应用。 还要注意结构清晰,分点或分步骤讲解,确保用户能跟上思路。最后总结QKV的作用,强调它们在捕捉依赖关系和动态权重方面的重要性。同时,检查是否符合之前的格式要求,如行内公式正确使用$,独立公式用$$并单独成段,中文回答等。</think>理解Self-Attention中的**Q(Query)、K(Key)、V(Value)**是掌握Transformer核心机制的关键。以下分步骤解释: --- ### **1. 背景:自注意力机制的目标** 自注意力(Self-Attention)的目标是让模型在处理序列(如句子)时,**动态判断每个词与其他词的相关性**。 例如,句子“猫追着老鼠,因为它饿了”中,“它”需要关联到“猫”而非“老鼠”。QKV的作用就是帮助模型完成这种关联计算。 --- ### **2. QKV的物理意义** Q、K、V是从输入向量通过线性变换(矩阵乘法)生成的三个矩阵: - **Query(查询)**:代表当前词需要“询问”其他词的某种特征。 - **Key(键)**:代表其他词可被查询的“标识”,用于与Query匹配。 - **Value(值)**:代表每个词实际需要贡献的信息。 **类比信息检索**: - 你(Query)拿着一个问题去图书馆查资料。 - 图书馆的书有索引关键词(Key)。 - 找到匹配的Key后,返回对应的内容(Value)。 --- ### **3. 计算过程分解** #### **步骤1:计算Query与Key的相似度** - 每个词的Query向量与所有词的Key向量做点积,衡量两者相关性: $$ \text{相似度分数} = Q_i \cdot K_j $$ - **缩放(Scale)**:为防止点积过大导致梯度消失,除以$\sqrt{d}$($d$为向量维度): $$ \text{分数缩放后} = \frac{Q_i \cdot K_j}{\sqrt{d}} $$ #### **步骤2:SoftMax归一化权重** - 对分数进行SoftMax,得到所有词对当前词的注意力权重(和为1): $$ \text{权重} = \text{SoftMax}\left( \frac{QK^T}{\sqrt{d}} \right) $$ #### **步骤3:加权聚合Value** - 用权重对Value向量加权求和,得到当前词的注意力输出: $$ \text{输出} = \sum (\text{权重} \times V) $$ **完整公式**: $$ \text{Attention}(Q, K, V) = \text{SoftMax}\left( \frac{QK^T}{\sqrt{d}} \right)V $$ --- ### **4. 为什么需要Q、K、V三个矩阵?** - **灵活性**:通过线性变换,Q、K、V可从不同角度表征输入(如关注语义、语法等不同特征)。 - **解耦相关性计算与信息提取**: - Q和K负责计算“哪些词相关”(相关性权重), - V负责提供“这些词的具体信息”(内容)。 --- ### **5. 实例解释** 以句子“猫追着老鼠,因为它饿了”为例: 1. 处理“它”时,其Query会与所有词的Key计算相似度。 2. 结果:与“猫”的Key匹配度高(因为“它”指代动物),而与“老鼠”“追”匹配度低。 3. Value矩阵中,“猫”对应的V会被高权重选中,最终输出包含“猫”的信息。 --- ### **6. 多头注意力(Multi-Head Attention)** - **核心思想**:并行使用多组Q、K、V(即多个“头”),每组关注不同维度的特征(如语义、语法、指代关系等)。 - **公式**: $$ \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O $$ 其中,$\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$,$W_i^Q, W_i^K, W_i^V$是各头的独立参数矩阵。 --- ### **总结** - **Q(查询)**:主动询问“我需要关注什么”。 - **K(键)**:被动提供“我可以回答什么”。 - **V(值)**:最终提供“我的具体信息是什么”。 - **本质**:通过QKV动态建模词与词之间的依赖关系,权重由数据驱动学习,避免了传统RNN/CNN的固定模式限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值