15 动态规划-最长上升子序列

问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…<sn并且这个子序列的长度最长,输出这个最长的长度。

例如有一个序列:1  7  3  5  9  4  8,它的最长上升子序列就是 1 3 4 8 长度为4

 

算法一(时间复杂度为O(n^2)):

该算法的思想是,计算每一个a[i]为结尾元素的上升子序列,存入dp[i],则dp[i]中的最大值即为最长上升子序列

int dp[1000];
int LIS(int arr[1000], int n)
{
	dp[1]=1;
	for(int i=2; i<=n; i++)
		dp[i]=0;
	int ans;
	for(int i=2; i<=n; i++)
	{
		ans=0;
		for(int j=1; j<i; j++)
		{
			if(arr[i]>arr[j] && dp[j]>ans)
				ans=dp[j];
		}
		dp[i]=ans+1;
	}
	ans=0;
	for(int i=1; i<=n; i++)
	{
		if(dp[i]>ans)
			ans=dp[i];
	}
	return ans;
}

 

算法二(时间复杂度为O(nlgn)):

该算法的思想是,建立一个辅助数组b[],b[1]=1,表示只有一个元素时LIS为1,;b[i]的值动态更新为满足LIS为 i 时,源数据中的最小值(这句话有点晦涩,细细体会)

int bSearch(int num, int k)  
{  
    int low=1, high=k;  
    while(low<=high)  
    {  
        int mid=(low+high)/2;  
        if(num>=b[mid])  
            low=mid+1;  
        else   
            high=mid-1;  
    }  
    return low;  
}  
 
int LIS()
{
	int low = 1, high = n;
	int k = 1;
	b[1] = p[1];
	for(int i=2; i<=n; ++i)
	{
		if(p[i]>=b[k])
			b[++k] = p[i];
		else
		{
			int pos = bSearch(p[i], k);
			b[pos] = p[i];
		}
	}
	return k;
}


 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值