DeepTEA: Effective and Efficient Online Time-dependent Trajectory Outlier Detection(VLDB2022)

本文介绍了一种新颖的深度学习方法DeepTEA,专用于道路异常轨迹检测,通过捕捉交通模式和时间依赖路径变化,有效解决不同地点和动态交通状况下的挑战。算法在实时性和准确性上优于竞品,提升17.52%。主要涉及潜在线路推断、时变路线推断和轨迹观测生成等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文研究了异常轨迹检测,其目的是提取道路上车辆的异常运动。这一重要问题有助于了解交通行为和检测出租车欺诈,但由于不同时间和地点的交通状况不同,这一问题具有挑战性。为了解决这一问题,我们提出了基于深度概率的时变异常检测算法(DeepTEA)。该方法采用深度学习的方法,从大量轨迹中获取时间相关的轮廓线,可以处理复杂的交通状况,准确地检测出轮廓线。我们进一步开发了deeptea的快速和近似版本,以便实时捕捉异常行为。与最先进的解决方案相比,我们的方法平均比7个竞争对手高出17.52%,可以处理数百万条轨迹。

问题:

 

 THE DEEPTEA MODEL

图2显示了deeptea的框架。它包含一个推理网络和一个生成网络。给定轨迹T,我们推断出行时间内的潜在交通模式q(z|T)(章节3.2)。利用轨迹观测τ反映随时间变化的轨迹转换,对潜在的随时间变化进行在推断网络建模路径r(章节3.3)。之后,利用随时间变化的路径r生成轨迹观测τ(第3.4节)。

 1)Latent Traffic Pattern Inference

在我们推导潜在交通模式之前,我们首先解释潜在交通模式z的含义。它表示出行过程中的动态交通条件,如{平稳→拥堵→畅通},或{拥堵→畅通}。然后介绍了所面临的挑战和算法设计。单一的轨迹T可能表达一些随机行为,如停车放松,不能代表真实的交通模式。这是关于如何表示真实交通模式的第一个挑战。第二个挑战是不同地点的交通状况不同,并且随着时间的变化而动态更新

 

 

 这样,RNN模型就可以很好地捕捉到交通状况背后的过渡。然后我们利用RNN模型的隐藏状态,推断出具有高斯分布的潜在交通模式z。我们使用的CNN和LSTM的组合是Convolutional LSTM。具体来说,我们利用随时间变化的动态交通条件来推断潜在的交通模式z。

 

 

 

2)Latent Time-dependent Route Inference 

轨迹T不仅可以表示位置信息,还可以表示两个轨迹点之间过渡时潜在的交通形态z。位置与潜在交通模式z的结合,不仅能最大限度地提高位置信息的可能性,还能反映时变交通条件下的轨迹转变,信息更丰富。 

 

 

 

3)Trajectory Observation Generation

轨迹观测生成的目标是使生成轨迹观测的概率τi最大化

 。。。。。。。。。。。。。。。。。

。。。。。。。。。。。。。。。。。。