一、有关深度学习部分的知识:
1.有关卷积神经网络基础知识:
①概述:
卷积神经网络通过局部感受野、权值共享以及池化层操作用于减少网络的参数规模,并使得网络学习到的特征具有位置平移,尺度缩放等方面的不变性。卷积神经网络的局部感受野机制使得神经元之间进行局部连接,每个神经元只需要作用于局部神经元,而不用作用于所有的神经元,这样大大减少了神经元之间连接的数量。神经元的参数共享机制用于减少网络需要学习的参数,对一张图像用相同的卷积核进行卷积操作,意味着能够得到所有神经元处于图像不同位置的完全相同的特征,这样使得卷积神经网络拥有良好的位置平移不变性。池化操作是逐层降低特征图的大小来减少网络的参数数量和计算量,增加了模型的尺度、缩放等局部不变性,提高了网络的容错能力
②卷积层:
卷积层是卷积神经网络中的特征提取层。
由于卷积神经网络的权重共享机制,每个卷积核在特征图上进行滑动卷积操作时只能提取一种特征。浅层卷积层只能提取一些较为简单的特征,高层卷积层能从低级语义中提取更复