论文基础常识摘录

本文摘录了深度学习的基础知识,包括卷积神经网络的局部感受野、权值共享和池化层,以及AlexNet、VGGNet和ResNet的简介。还探讨了GAP和GMP在提取特征向量中的作用。此外,介绍了指静脉领域的发展和两种注意力机制的差别,重点关注通道和空间注意力。最后,简述了top-k accuracy的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、有关深度学习部分的知识:

        1.有关卷积神经网络基础知识:

①概述:

        卷积神经网络通过局部感受野、权值共享以及池化层操作用于减少网络的参数规模,并使得网络学习到的特征具有位置平移,尺度缩放等方面的不变性。卷积神经网络的局部感受野机制使得神经元之间进行局部连接,每个神经元只需要作用于局部神经元,而不用作用于所有的神经元,这样大大减少了神经元之间连接的数量。神经元的参数共享机制用于减少网络需要学习的参数,对一张图像用相同的卷积核进行卷积操作,意味着能够得到所有神经元处于图像不同位置的完全相同的特征,这样使得卷积神经网络拥有良好的位置平移不变性池化操作是逐层降低特征图的大小来减少网络的参数数量和计算量,增加了模型的尺度、缩放等局部不变性,提高了网络的容错能力

②卷积层:

        卷积层是卷积神经网络中的特征提取层

        由于卷积神经网络的权重共享机制,每个卷积核在特征图上进行滑动卷积操作时只能提取一种特征。浅层卷积层只能提取一些较为简单的特征,高层卷积层能从低级语义中提取更复

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Ocean__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值