力扣1020. 飞地的数量

这篇博客介绍了如何利用广度优先搜索(BFS)解决一个二维矩阵中的陆地区域计数问题。作者首先解释了问题背景,即找出被边界包围且无法离开矩阵的陆地单元格数量。接着,提供了C++实现的BFS算法,从矩阵边界开始,通过改变值为0来标记已访问过的陆地区域,并最终统计未被访问的1(陆地)数量。博客还总结了处理这类图表问题的通用步骤,包括确定搜索方法、起点、判断搜索状态以及答案输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

俄罗斯怎么小,为什么北约怎么怕?

原来这是俄罗斯的一块飞地。并不是俄罗斯所有的领土。

给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。

一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。

返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。

 这是一道常规的bfs搜索题,显而易见从四个边界入手,grid【】【】为1就入队,然后在用广搜,如果与边界相连接格子的值为1,就把grid改为0,之后再遍历一下,看有几个1。

class Solution {
public:
    int room[4][2] = { {-1,0},{0,1},{1,0},{0,-1} };

    int numEnclaves(vector<vector<int>>& grid) {
        int x = grid.size(), y = grid[0].size();
        if (x == 1)return 0;
        queue<pair<int, int>>q;
        for (int i = 0; i < y; i++)//四周边界入队1
            if (grid[0][i] == 1) 
                q.emplace(0, i);
        for (int i = 0; i < y; i++)
            if (grid[x - 1][i] == 1) 
                q.emplace(x-1, i);
        for (int i = 0; i < x; i++)
            if (grid[i][y-1] == 1) 
                q.emplace(i, y-1);
        for (int i = 0; i < x; i++)
            if (grid[i][0] == 1) 
                q.emplace(i, 0);
        while (!q.empty()) {//bfs搜素
            int first_x = q.front().first;
            int first_y = q.front().second;
            q.pop();
            for (int i = 0; i < 4; i++) {//first元素的四周搜素
                int next_x = first_x + room[i][0];
                int next_y = first_y + room[i][1];
                if (next_x >= 0 && next_x < x && next_y >= 0 && next_y < y && grid[next_x][next_y] == 1) {
                    q.emplace(next_x, next_y);
                    grid[next_x][next_y] = 0;
			    }
            }
        }
        int k = 0;
        for (int i = 1; i < x-1; i++)
            for (int j = 1; j < y-1; j++)
                if (grid[i][j] == 1)
                    k++;
        return k;
    }
};

我也写了好多bfs和dfs的题目了,总结一下这类图表题目的思路:

1.明确用什么,bfs还是dfs;

2.我们要搜索的第一个点(起始点)是什么;

3.我们怎么来判断这个点我们是否搜索过;

4.根据题目要求给出答案了。

jsl

### LeetCode 146 LRU Cache 的 C++ 实现 LRU(Least Recently Used)是一种常见的缓存淘汰策略,用于管理固定大小的内存空间。当缓存满时,会移除最近最少使用的数据项以腾出空间。 以下是基于双向链表和哈希表实现的 C++ 解决方案: #### 双向链表节点定义 为了高效地维护访问顺序并快速更新节点位置,可以使用自定义的 `ListNode` 类来表示双向链表中的节点。 ```cpp struct ListNode { int key; int value; ListNode* prev; ListNode* next; ListNode(int k, int v) : key(k), value(v), prev(nullptr), next(nullptr) {} }; ``` #### 缓存类设计 通过组合哈希表和双向链表,可以在 O(1) 时间复杂度下完成插入、删除以及查找操作。 ```cpp class LRUCache { private: unordered_map<int, ListNode*> map; // 哈希表存储键到节点指针的映射关系 ListNode* head; // 虚拟头结点 ListNode* tail; // 虚拟尾结点 int capacity; // 容量上限 public: LRUCache(int cap) : capacity(cap) { head = new ListNode(-1, -1); // 初始化虚拟头部 tail = new ListNode(-1, -1); // 初始化虚拟尾部 head->next = tail; // 连接首尾 tail->prev = head; } ~LRUCache() { ListNode* cur = head; while (cur != nullptr) { ListNode* temp = cur; cur = cur->next; delete temp; } } void removeNode(ListNode* node) { node->prev->next = node->next; node->next->prev = node->prev; } void addToHead(ListNode* node) { node->next = head->next; node->prev = head; head->next->prev = node; head->next = node; } int get(int key) { if (!map.count(key)) return -1; // 如果不存在该key,则返回-1 ListNode* node = map[key]; removeNode(node); addToHead(node); return node->value; } void put(int key, int value) { if (map.count(key)) { // 若已存在则更新其值并将它移到最前面 ListNode* node = map[key]; node->value = value; removeNode(node); addToHead(node); return; } if (map.size() >= capacity) { // 当容量达到上限时,移除最后未被使用的节点 ListNode* lastUsed = tail->prev; removeNode(lastUsed); map.erase(lastUsed->key); delete lastUsed; } ListNode* newNode = new ListNode(key, value); // 创建新节点并加入hashMap与链表前端 map[key] = newNode; addToHead(newNode); } }; ``` 上述代码实现了基本功能[^3],其中包含了以下几个核心部分: - **removeNode**: 将指定节点从当前列表中移除。 - **addToHead**: 把某个节点移动至链表开头的位置。 - **get 方法**: 获取对应 key 的值,并将其标记为最新访问过的项目。 - **put 方法**: 插入新的键值对或者覆盖已有条目;如果超出设定的最大数量限制,则清除掉最早之前加载的数据记录。 此版本的时间效率较高,在每次调用 `get()` 或者 `set()` 函数时都能保持常数级时间性能表现[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值