题目难度: 中等
今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复
剑指offer2
就能看到该系列当前连载的所有文章了, 记得关注哦~
题目描述
m*n
的二维数组 plants 记录了园林景观的植物排布情况,具有以下特性:
- 每行中,每棵植物的右侧相邻植物不矮于该植物;
- 每列中,每棵植物的下侧相邻植物不矮于该植物。
请判断 plants 中是否存在目标高度值 target。
示例 1:
- 输入:plants = [[2,3,6,8],[4,5,8,9],[5,9,10,12]], target = 8
- 输出:true
示例 2:
- 输入:plants = [[1,3,5],[2,5,7]], target = 4
- 输出:false
提示:
- 0 <= n <= 1000
- 0 <= m <= 1000
题目思考
- 如何利用题目给出的条件进行优化?
解决方案
- 分析题目, 相信大家都不难想出暴力遍历所有数字和二分查找每行的方法, 前者时间复杂度为
O(RC)
, 后者有所优化, 达到了O(RlogC)
. (R
和C
分别代表行和列的数目) - 当然, 对于二分查找, 我们还可以稍作优化. 因为行和列都是递增, 所以二分查找既可以横向查找, 也可以纵向查找, 具体选哪种就看行数还是列数更多: 行数多的话就纵向查找, 否则横向查找. 这样就充分利用了二分查找对数复杂度的特性, 减小较大项对速度的影响, 使得复杂度降低为
O(min(R,C)*log(max(R,C)))
- 但即使是上面的二分查找, 也只用到了行或列递增的单一条件, 没有把两个递增条件同时用上, 我们如何同时用上这两个条件呢?
- 回顾两个递增性质, 假设当前我们遍历到的下标为
(r,c)
, 那么它和 target 的关系可以分为下面三种情况:- 值等于 target, 直接返回 true 即可
- 值小于 target, 那么以该点为右下角的左上矩形中的所有值都必然小于 target, 可以安全被排除, 而其余部分则说不好
- 值大于 target, 正好与上面相反, 以该点为左上角端点的右下矩形都可以被排除
- 重点关注上面的两个排除关系, 我们如果可以从某个起点开始, 一次排除一片区域, 然后朝一个方向继续线性遍历, 这样很快就能排查完整个二维数组
- 而为了满足线性遍历的条件, 起点的可选值只能是左下角或者右上角, 这里可以用反证法证明: 假设我们从二维数组左上角或右下角或中间某个地方开始的话, 排除完一块区域后, 我们接下来总有两个方向选择: 排除了右下部分, 则可以向左或者向上继续遍历, 同理排除左上部分也会有向右和向下两个方向可选.
- 而如果起点选在左下角或者右上角, 情况就不同了, 只会有一种选择. 这里以左下角起点为例, 我们可以通过递推来得出结论:
- 如果初始值小于 target, 因为下边没元素, 所以只能向右不能向下;
- 如果初始值大于 target, 因为左边没元素, 所以只能向上不能向左;
- 如果第一步操作是向右, 那么第二个值如果小于 target, 还只能向右, 因为下边仍然没元素; 而如果大于 target, 还只能向上, 因为左边的整列都已经在上一次被排除掉了, 结果不可能存在于左边
- 而如果第一步操作是向上, 按照同样的分析, 仍然可得还是只能向右或者向上继续遍历
- 以此类推, 每次都是要么向右, 要么向上, 就能排查完二维数组所有的数字得出结果
- 具体实现时, 我们初始化坐标为左下角(当然右上角也可以, 大家可以想想看代码要怎么改), 然后判断当前点与 target 的关系, 大于的话行号减 1, 小于的话列号+1, 直到找到等于 target 的点, 或者超出二维数组范围
- 下面的代码对必要步骤有详细的解释, 方便大家理解
复杂度
- 时间复杂度
O(R+C)
: 遍历时每次要么行号-1, 要么列号+1, 最多只用遍历 R+C 次 - 空间复杂度
O(1)
: 只使用了常数额外空间
代码
class Solution:
def findTargetIn2DPlants(self, plants: List[List[int]], target: int) -> bool:
if not plants:
return False
rows, cols = len(plants), len(plants[0])
# 起点为左下角
r, c = rows - 1, 0
while r >= 0 and c < cols:
if plants[r][c] == target:
# 找到target, 返回True
return True
elif plants[r][c] > target:
# 大于target, 向上
r -= 1
else:
# 小于target, 向右
c += 1
# 遍历整个二维数组都找不到, 返回False
return False
大家可以在下面这些地方找到我~😊
我的公众号: 算法精选, 欢迎大家扫码关注~😊