模式识别--线性判别函数

本文介绍了线性判别函数的概念,作为模式分类的准则,它用于划分不同类别的模式。当维度为3时,判别界面是一个平面;超过3维则为超平面。线性判别函数的一般形式给出,并详细阐述了在两类和多类情况下的应用,包括两分法及其特例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、定义

         直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d(X) =0来划分,那么称d(X) 为判别函数,或称判决函数、决策函数。如下图所示。

        当维数=3时,判别界面是一个平面。>3时,判别界面为超平面。

2、线性判别函数

 将二维模式推广到n维,线性判别函数的一般形式为:


式中:

    权向量。

(一)、两类情况

            

    

(二)多类情况

         两分法   两分法  两分法特例

(1)两分法

          

X 分别代入M 个类的d(X)中,若只有di(X)>0,其他d(X)<0,则判为ωi类。


(2)两分法

    对于一个三类问题,若则X∈w1类。在判别w1类模式时不起作用。

(3)两分法特例

    

   或者

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值