随着【主数据】【数据生命周期】【数据标签】三个模块的结束,本章正式进入【总】的阶段。下面,直接开始第一章的总结:数据治理的可行性自我评估。
数据治理,并非所有的企业都适合启动的。什么样的企业暂时不适合启动数据治理?这一章总结一些特征,可以进行一些参考。
不适合启动数据治理的企业有哪些特征。
1、第一个特征:业务目标不明确的企业
个人有一个观点,凡是说影响数字化转型是因为数据治理没有做好的企业,都做不好数据治理。
因为,没有想清楚数据治理的业务目标到底是什么。数字化转型本身是一个特别大的词,不可能用这个大词来代替业务目标。
需要一个明确的业务目标,是假如所有的数据问题都解决了,数据孤岛已经被拉通,数据质量已经提升。那么,基于这个治理好的数据,是想做什么,达成什么业务目标?
如果这个业务目标没有想清楚,就会是为了治理而治理。可能还不适合启动数据治理这件事情。
就拿传说中数字化转型做的成功的华为来说,也是基于打通国内外的订单合同、财务数据,这个具体的业务目标而做的数据治理。
所以,第一点,业务目标不明确的企业还不适合做数据治理。
当然,找到业务目标这件事情本身就是比较困难的,而且大概率找外部的支持是没有办法解决这个问题,仅仅能够起到辅助的作用。
想要在业务中发现问题,找到业务目标,只有内部人员深入业务,自己去发现业务的需求点。
所以,不妨从一个小的业务问题开始,明确业务的具体目标。只有在具体业务问题里面,数据治理才能够发挥出来真正的价值。
2、第二个特征:业务流程不稳定,或业务流程过于简单
数据治理,需要先有数据才能够去治理。
当业务流程不稳定的时候,业务本身还处在高速发展阶段,业务流程经常会变更。
数据由业务产生,业务的变化势必会引起数据的变化,在变化的数据上做治理,是不可能的事情。
当然,这个稳定是一个相对的稳定,绝对不是说业务不发展了。至于这个相对值如何把握,其实没有一个明确的度,具体情况具体分析了,或者当领导觉得这个度到了的时候,就是可以的了。
除了业务流程相对稳定外,业务流程也不能过于简单。
数据的价值只有在跨系统,跨组织复用的时候,才能发挥出来价值。
组织足够庞大,系统足够复杂,才适合进行数据治理,更大的发挥出数据的价值。
而如果业务流程本身过于简单,数据过于简单,可能也不适合做数据治理。
3、第三个特征:短期压力过大,缺乏领导支持
个人一直觉得,数据治理的过程是一个信任的过程。
因为会花费大量的时间做水面之下的工作,这种水面之下的工作是不会马上有业务产出的,如果本身短期压力过大,对于业务产出有要求的话,可能也不适合马上启动数据治理。
当然,没有业务产出并不代表没有目标产出。需要有阶段性的目标产出,只不过这个阶段性的目标产出并不会那么具有业务价值。
就像第一点提到的,在具体业务问题中进行的数据治理。那么,完成这个基于业务问题的数据治理可能会涉及到方方面面,一个领域的数据治理可能会耗时一两年,有多少公司能够等待这么久,又有多少领导能够容忍这么久。又有多少人能够知道两年后的能产生的价值而一直投入。
所以领导的支持显得尤为重要。是真的支持还是口头支持,是上心的支持还是放任自流的支持,又是另一个话题了。
之前看过一篇数据治理成功的文章,开始觉得做数据治理的人是幸运,能够得到真正的支持。但是转念一想,这份幸运也是长时间的信任、成果累计起来的。就更多的变成了佩服了,佩服做决定的人,佩服执行决定的人。
4、第四个特征:基础设施薄弱
这里的基础设施,主要是针对数据治理的工具。工具的支撑是数据治理的重要基础。
工具基础薄弱,没有各个模块所需要的一些工具能力,是没有办法进行数据治理的。所以,基础设施也是能够启动数据治理的一个关键条件。
这里也不能因为基础设施的薄弱,而过分的对工具追求。工具本身不是目的,而是手段,不能本末倒置,陷入对于“工具崇拜”的误区中,把买了工具作为数据治理这件事情的目标本身,花费很多购买了工具,却没有相应的流程和人员来有效的利用这些工具。
说到买工具,这里也提一下自研和买工具的个人感受。如果自研的话,好处当然是能够更好的满足自己的需求了,坏处就是前期投入成本高,周期长,后期也需要维护人力。如果自研的话,就是正好反过来了,前期不需要过长的周期,快速的拥有一个工具,坏处的话就是不一定能够满足不同的个性化需求,至于后期的维护成本,有维保的费用可能不见得低多少。
个人是数据平台产品经理,发现不同的公司都是不同的,都会有自己的特殊需求,所以,我倾向于自研工具多一些。但是,目前的大环境似乎却是反过来的,除了体量特别大的公司,大量公司不再维护数据平台工具,也就不需要数据产品经理了。
更加倾向于使用云厂商工具,一方面是大环境上使得降本成为一个风气,另一方面自研工具的投入大,产出不可量化也是一个问题。
5、第五个特征:缺乏专门的人才
事在人为。
企业内缺乏专门的人才,也不适合启动数据治理。
但是什么样的人算是专门的人才那?
这件事情就又涉及到一个问题数据治理是适合偏技术的人、偏产品的人、还是偏业务的人来实施。
说实话,个人没有明确的答案。
我个人是有技术和产品经验的,所以在写数据治理文章也好,做数据治理方案也好,都会从技术实现,产品方案上考虑。优势就是落地性强,劣势就是可能业务性少一点,而且也容易让自身的局限性所限制。
因为,没有特别强的业务视角,也自然不能体会完全业务的视角来看数据治理是什么体验。
如果业务出身的话,因为有了较强的业务基础,这是一个优势,但是技术和产品知识的补齐还是有必要的。
是偏技术、产品,还是偏业务的,都有需要补齐的课程。也许不断前进的人,才是适合数据治理的人。
但是,不管哪类人,都需要有一套完整的自洽的理论框架,是否有这种人来做统一指导很是关键。这种人往往也是关键岗位,也看到过很多,关键岗位但是不合适的人,影响的不仅仅是一个岗位的问题,而是整个团队都不能发挥出能力。这个还是很吓人的,这个也让我对数据治理能否成功,带有一点点宿命论的感觉。有时候,错了,就是错了,就不会再成功。就需要花很长的时间去等待大的变动,新的调整和机会。
6、第六个特征:组织结构不合理
组织结构决定产品结构,组织结构决定技术结构。同样,组织结构也觉得数据治理的发挥。
一件事情能不能顺利的推进,人是关键,而能否发挥出人的潜力,就是组织结构的事情了。
之前,在【数据技术无第二,数据治理无第一】中也提到过,数据治理的理论、方法有很多,每个人都会有一套自己的理论,实践。
如果,没有一个合适的组织来进行协调不同的人,那么不同的小组向不同的方向发力,势必会出现相互掣肘,甚至反方向的力。
万事万物都有一个窗口期。一旦反方向的力形成,除非翻天覆地的大变化,否则很难扭转形式。而做数据治理这件事情的窗口,可能也就过去了,下次窗口不知道什么时候再来了。
个人一直觉得,数据治理这件事情,或者说公司内部想做一件事情,一定程度上是需要“独裁”的。需要一个唯一的大脑指明方向的,在这个唯一大脑的指挥下,手、脚、耳、口、鼻,形成一个统一的整体。而组织需要做的事情就是,明确这样的机制,谁做大脑,谁做四肢。可以提意见,但是最终只能有一个统一决策。好的组织就是确保这件事情的,形成一个有机的整体,将事情干成。
这里的大脑,倒非一定是组织内最大的领导。这个又涉及到决策形式是从上到下的决策形式,来时从下到上的决策形式了。不展开说了,但是这个大脑需要团队信服,配合。这都是需要通过合理的组织来完成的。
这里的组织结构更多的是指实际的组织,而并非虚拟的组织。公司内虚拟的组织双线汇报,评估考核,甚至日常办公是不是做在一起,都让虚拟组织效果并不怎么明显。
说完了暂时不适合启动数据治理的企业特则,那么条件反转一下,是不是就是适合启动数据治理的特征的企业了。
反转后适合做企业治理的五个条件,就像搭建一个小房子:业务目标明确是屋顶,业务流程稳定、短期业绩压力不大且领导支持,是两个支柱,基础设施完备、具备专业人才、组织结构合理是三个地基。
只有这样,才能把数据治理这个房子盖起来。
7、数据治理一定是先“污染”,再治理的过程
对于不适合启动数据治理的项目,并不意味这不能够使用数据了。依然可以有数据中台部门,依然可以进行数据的汇集、数据的加工、数据的对外输出的。
只是这个过程可能缺少一些必要的统一标准,规范。这个也是个人一直想表达的:数据治理一定是先“污染”,再治理的过程。
这个污染,并不是说一开始的数据使用都是错误的,而是说只有数据使用到一定阶段,才能发现一些规律、标准、原则,才能进行数据治理。
比如说,数据格式的统一,需要有多个格式之后,有各种冲突了,才去统一。比如说指标口径统一,需要大量的使用数据了,使用数据过程中发现存在指标口径不统一的情况,才能去做指标口径统一的治理,等等。
大概意思就是,只有先把数据用起来,在用的过程中出现一些问题了,才需要去治理。数据都没有很好的用起来,自然也就没有数据问题了,也就无所谓治理不治理了。
如果有了污染的部分,可以通过数据治理成熟度来判断下,现在所处的阶段。似乎有一个国内的统一标准来做这个数据治理成熟度评价,来看看数据使用所处的阶段,这里有做赘述,有需要的可以搜索一下。
8、一次数据治理并不需要将所有的模块都进行操作
按照本系列文章的划分,数据治理包括了9个模块。如果要启动数据治理,也不一定一下将所有的模块都实施,可以分阶段,逐个的来进行实施。
但是,相互之间的关联需要提前想好,不能因为一个模块的提前实施,而堵上了其他模块的路。
某个特定的组织如何管理它的数据取决于它的目标、规模、资源和复杂性以及对数据如何支持总体战略的认识程度。大多数企业并不会执行每个知识领域中描述的所有活动。
然而,更广泛地了解数据管理背景将有助于组织在工作中更好地决定应该关注哪里,从而改进这些职能内部和职能之间的管理实践。
9、总结
知道当前所处的位置,才能更好的出发。
承认当前的现状,才能指导努力的方向。
数据治理也是一样的,评估当前组织在数据治理的路上在什么位置,还有多大的差距,是要往哪里走很重要。
拿到地图是一回事?知道自己的位置又是另一回事?知道要去的目的地还是另一回事?
似乎是在说数据治理,但是不是人生也是一样的道理那。