LR(Logistic Regression)逻辑回归模型

目录

一、线性回归

1.1 一元线性回归

1.2 多元线性回归

二、逻辑回归

2.1 构建逻辑回归函数

2.2 求解函数参数


LR模型是一个传统的分类模型,常用于二分类任务,属于有监督的学习模型,也是工业界常用的一种分类方式。

一、线性回归

逻辑回归其实也是线性回归的一种,首先介绍一下线性回归,给定有监督训练数据集(X,Y),X表示特征,Y表示标签,线性回归试图学习得到一个线性模型,以尽可能准确地预测实际标签的结果。
线性回归首先有一个假设,就是假设样本服从正态分布,因此,线性回归又是一种参数模型。

1.1 一元线性回归

回归模型中只含有一个自变量x,主要用来处理一个自变量x与一个因变量y之间的线性关系。

(1)构建一元线性方程

 有n组数据,自变量(特征值) 与因变量(目标值)之间线性相关,假设他们之间关系为:,这个就是构建的一元线性方程。在这里,Y是我们试图预测的因变量,X是我们用来进行预测的自变量,a是回归线的斜率,b是一个常数,称为截距。

我们可以以身高(x)与体重(y)为例,二者是线性关系,身高正比于体重:

线性回归的目标就是让f(X)与y之间的差距最小,也就是权重a和偏置b取什么值的时候f(X)和y最接近

(2)构建损失函数

损失函数是来度量模型预测值与真实值不一样的程度的,或者说度量预测错误的程度,损失函数值越小,模型就越好。在回归问题中,误差平方和是回归任务中最常用的性能度量。这里就可以令损失函数等于误差平方和。则损失函数为:

因此,将九个点分别带入该二元方程得到如下:

58=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值