文章目录
1.Hive入门
1.1什么是Hive
Hive:由Facebook开源用于解决海量结构化日志的数据统计。
Hive是基于Hadoop的一个数据仓库工具
,可以将结构化的数据文件映射为一张表
,并提供类SQL
查询功能。
本质是:将HQL转化成MapReduce程序
1)Hive处理的数据存储在HDFS
2)Hive分析数据底层的实现是MapReduce
3)执行程序运行在Yarn上
1.2 Hive的优缺点
1.2.1 优点
-
操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
-
避免了去写MapReduce,减少开发人员的学习成本。
-
Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
4)Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
- Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
1.2.2 缺点
1.Hive的HQL表达能力有限
(1)迭代式算法无法表达
(2)数据挖掘方面不擅长
2.Hive的效率比较低
(1)Hive自动生成的MapReduce作业,通常情况下不够智能化
(2)Hive调优比较困难,粒度较粗
1.3Hive架构原理
1.用户接口:Client
CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)
2.元数据:Metastore
元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
3.Hadoop
使用HDFS进行存储,使用MapReduce进行计算。
4.驱动器:Driver
(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。
(3)优化器(Query Optimizer):对逻辑执行计划进行优化。
(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
2.Hive安装
2.1Hive安装
2.2HiveJDBC访问
2.2.1启动hiveserver2服务
hiveserver2
2.2.2连接hiveserver2服务
新建命令窗口
,输入以下命令
beeline -u "jdbc:hive2://localhost:10000"
出现该图代表成功连接
2.2.3注意
这里报错通常是由于权限不够,只需要对tmp和opt文件夹赋权即可
hadoop fs -chmod -R 777 /tmp
hadoop fs -chmod -R 777 /opt
2.3Hive常用交互命令
1.“-e”不进入hive的交互窗口执行sql语句
hive -e "查询语句"
2.“-f”执行脚本中sql语句
hive -f sql文件路径/sql文件名称
执行文件中的sql语句并将结果写入文件中
hive -f sql文件路径/sql文件名称 > 保存结果的路径
2.4Hive其他命令操作
1.退出hive窗口
exit;
quit;
2.在hive cli命令窗口中如何查看hdfs文件系统
dfs -ls /;
3.在hive cli命令窗口中如何查看本地文件系统
!ls /opt;
2.5Hive常见属性配置
2.5.1数据仓库位置配置
修改hive-site.xml文件的value
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/opt/hive/warehouse</value>
</property>
2.5.2查询后信息显示配置
在hive-site.xml
文件中添加如下配置信息,就可以实现显示当前数据库,以及查询表的头信息配置。
<property>
<name>hive.cli.print.header</name>
<value>true</value>
</property>
<property>
<name>hive.cli.print.current.db</name>
<value>true</value>
</property>
重新启动hive,对比配置前后差异。
2.5.3运行日志信息配置
- Hive的log默认存放在
/tmp/root/hive.log
目录下(root为当前用户名)
- 修改hive的log存放日志到
/opt/hive/logs
1.修改/opt/hive/conf/hive-log4j.properties.template
文件名称为hive-log4j.properties
mv hive-log4j.properties.template hive-log4j.properties
2.在hive-log4j.properties
文件中修改log
存放位置
hive.log.dir=/opt/hive/logs
重启hive
3.Hive数据类型
3.1基本数据类型
Hive数据类型 | Java数据类型 | 长度 | 例子 |
---|---|---|---|
TINYINT | byte | 1byte有符号整数 | 20 |
SMALINT | short | 2byte有符号整数 | 20 |
INT |
int | 4byte有符号整数 | 20 |
BIGINT | long | 8byte有符号整数 | 20 |
BOOLEAN | boolean | 布尔类型,true或者false | TRUE FALSE |
FLOAT | float | 单精度浮点数 | 3.14159 |
DOUBLE |
double | 双精度浮点数 | 3.14159 |
STRING |
string | 字符系列。可以指定字符集。可以使用单引号或者双引号。 | ‘now is the time’ “for all good men” |
TIMESTAMP | 时间类型 | '2013-01-31 00:13:00.345’ | |
BINARY | 字节数组(二进制) | 1010 |
红标为常用的数据类型;
对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符。
3.2集合数据类型
数据类型 | 描述 | 语法示例 |
---|---|---|
STRUCT | 相当于java语言当中没有方法的对象,只有属性。例如,如果某个列的数据类型是STRUCT{first STRING, last STRING},那么第1个元素可以通过字段.first 来引用。 |
struct() |
MAP | MAP是一组键-值对元组集合,使用数组表示法可以访问数据。例如,如果某个列的数据类型是MAP,其中键->值对是’first’->’John’和’last’->’Doe’,那么可以通过字段名[‘last’] 获取最后一个元素 |
map() |
ARRAY | 数组是一组具有相同类型和名称的变量的集合。这些变量称为数组的元素,每个数组元素都有一个编号,编号从零开始。例如,数组值为[‘John’, ‘Doe’],那么第2个元素可以通过数组名[1] 进行引用。 |
Array() |
3.3类型转化
可以使用CAST操作显示进行数据类型转换
例如CAST(‘1’ AS INT)将把字符串’1’ 转换成整数1;如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。
4.DDL数据定义
4.1创建数据库
- 创建一个数据库,数据库在HDFS上的默认存储路径是/opt/hive/warehouse/*.db
create database hivetest;
- 避免要创建的数据库已经存在错误,增加if not exists判断。
(标准写法)
create database if not exists hivetest;
- 创建一个数据库,指定数据库在HDFS上存放的位置
create database if not exists hivetest location 'hdfs路径';
4.2查询数据库
- 显示数据库
show databases;
过滤显示查询的数据库
show databases like 'hivetest*';
- 查看数据库详情
desc database hivetest;
- 切换当前数据库
use 目标数据库名称;
4.3删除数据库
- 删除空数据库
drop database 库名;
- 如果删除的数据库不存在,最好采用 if exists判断数据库是否存在
drop database if exists 库名;
- 如果数据库不为空,可以采用cascade命令,强制删除
drop database 库名 cascade;
4.4创建表
- 建表语法
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
- 字段解释说明
(1)CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
(2)EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive创建内部表时,会将数据移动到数据仓库指向的路径
;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
(3)COMMENT:为表和列添加注释。
(4)PARTITIONED BY创建分区表
(5)CLUSTERED BY创建分桶表
(6)SORTED BY不常用
(7)ROW FORMAT
DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, …)]
用户在建表的时候可以自定义SerDe或者使用自带的SerDe。如果没有指定ROW FORMAT 或者ROW FORMAT DELIMITED,将会使用自带的SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过SerDe确定表的具体的列的数据。
SerDe是Serialize/Deserilize的简称,目的是用于序列化和反序列化。
(8)STORED AS指定存储文件类型
常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE(列式存储格式文件)
如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
(9)LOCATION :指定表在HDFS上的存储位置。
(10)LIKE允许用户复制现有的表结构,但是不复制数据。
4.4.1内部表
默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive会(或多或少地)控制着数据的生命周期。Hive默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如,/opt/hive/warehouse)所定义的目录的子目录下。 当我们删除一个管理表时,Hive也会删除这个表中数据。
管理表不适合和其他工具共享数据。
- 普通创建表
create table if not exists student2(
id int, name string
)
row format delimited fields terminated by '\t';
- 根据查询结果创建表(查询的结果会添加到新创建的表中)
create table if not exists student3 as select id, name from student;
- 根据已经存在的表结构创建表
create table if not exists student4 like student;
- 查询表的类型
desc formatted student2;
4.4.2外部表
因为表是外部表,所以Hive并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。
- 管理表和外部表的使用场景
每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。
案例详解
分别创建employee外部表,并向表中导入数据。
Michael|Montreal,Toronto|Male,30|DB:80|Product:DeveloperLead
Will|Montreal|Male,35|Perl:85|Product:Lead,Test:Lead
Shelley|New York|Female,27|Python:80|Test:Lead,COE:Architect
Lucy|Vancouver|Female,57|Sales:89|Sales:Lead
- 建表语句
创建员工表
create external table if not exists employee(
name string,
address array<string>,
personalInfo array<string>,
technol map<string,int>,
jobs map<string,string>)
row format delimited
fields terminated by '|'
collection items terminated by ','
map keys terminated by ':'
lines terminated by '\n';
向外部表中导入数据
load data local inpath '/root/employee.txt' into table employee;
查询结果
select * from employee;
4.4.3管理表与外部表的互相转换
- 修改内部表student2为外部表
alter table student2 set tblproperties('EXTERNAL'='TRUE');
- 修改外部表student2为内部表
alter table student2 set tblproperties('EXTERNAL'='FALSE');
注意:('EXTERNAL'='TRUE')和('EXTERNAL'='FALSE')为固定写法,区分大小写!
4.5分区表(partition)
分区表实际上就是对应一个HDFS文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive中的分区就是分目录<