基本步骤:
①输入初始数据矩阵X
②输入待处理数据所在列[1,2,…,n]
③输入各列数据类型(极小型为1,中间型为2,区间型为3)
④输入中间型的最佳值以及区间型的上界、下界,得到归一化处理的得分矩阵
可支持处理在一个数据矩阵中存在多个极小型/区间型/中间型指标
但还未加入计算带权重的得分
主函数
%% 输入数据矩阵
clear;clc
X=input('请输入数据矩阵:');
[m,n]=size(X);
PostX=input('请输入需要处理的数据所在列:');
disp('极小型为1,中间型为2,区间型为3')
Type=input('请输入数据类型:')
PositX=X;
%% 原始矩阵正向化
for i=1:size(PostX,2)
if Type(1,i)==1
clc
TempMin=Min(X(:,PostX(1,i)););
PositX(:,PostX(1,i))=TempMin;
elseif Type(1,i)==2
clc
Best=input(['请输入第',num2str(PostX(1,i)),'列的最佳值:']);
TempMid=Mid(X(:,PostX(1,i)),Best);
PositX(:,PostX(1,i))=TempMid;
else
clc
a=input(['请输入第',num2str(PostX(1,i)),'列的上界:']);
b=input(['请输入第',num2str(PostX(1,i)),'列的下界:']);
TempSec=Section(X(:,PostX(1,i)),a,b);
PositX(:,PostX(1,i))=TempSec;
end
end
disp('正向化后的矩阵为:')
disp(PositX)
%% 正向化矩阵标准化
StdX=PositX./(repmat(sum(PositX.^2).^(1/m),m,1));
%% 计算得分并归一化
MaxStdX=max(StdX);
MinStdX=min(StdX);
Score=zeros(m,n);
for i=1:m
for j=1:n
Dmax=sum((MaxStdX-StdX(i,j)).^2).^(1/2);
Dmin=sum((MinStdX-StdX(i,j)).^2).^(1/2);
Score(i,j)=Dmin/(Dmax+Dmin);
end
end
NormalX=Score./repmat(sum(Score),m,1);
disp('得分矩阵为:')
disp(NormalX)
子函数
极小型指标
function [MinM]=Min(InitMiM)
line=size(InitMidM,1);
Max=max(max(InitMidM));
MinM=repmat(Max,line,1)-InitMidM;
end
中间型指标
function [MidM]=Mid(InitMidM,Best)
[m,n]=size(InitMidM);
M=max(abs(InitMidM-repmat(Best,m,1)));
Temp=abs(InitMidM-repmat(Best,m,1));
MidM=zeros(m,1);
for i=1:m
MidM(i,1)=1-Temp(i,1)/M;
end
end
区间型指标
function [SecM]=Section(InitSecM,a,b)
m=min(InitSecM);
n=max(InitSecM);
M=max(a-m,b-n);
line=size(InitSecM,1);
SecM=zeros(line,1);
for i=1:line
if InitSecM(i,1)>=a && InitSecM(i,1)<=b
SecM(i,1)=1;
elseif InitSecM(i,1)<a
SecM(i,1)=1-(a-InitSecM(i,1))/M;
else
SecM(i,1)=1-(InitSecM(i,1)-b)/M;
end
end
end
刚学了一点点matlab,topsis也不是很懂的那种,所以目前只能写到这种效果(