【学习笔记】Matlab优劣解距离法

基本步骤:
①输入初始数据矩阵X
②输入待处理数据所在列[1,2,…,n]
③输入各列数据类型(极小型为1,中间型为2,区间型为3)
④输入中间型的最佳值以及区间型的上界、下界,得到归一化处理的得分矩阵

可支持处理在一个数据矩阵中存在多个极小型/区间型/中间型指标
但还未加入计算带权重的得分

主函数

%% 输入数据矩阵
clear;clc
X=input('请输入数据矩阵:');
[m,n]=size(X);
PostX=input('请输入需要处理的数据所在列:');
disp('极小型为1,中间型为2,区间型为3')
Type=input('请输入数据类型:')
PositX=X;

%% 原始矩阵正向化
for i=1:size(PostX,2)
    if Type(1,i)==1
        clc
        TempMin=Min(X(:,PostX(1,i)););
        PositX(:,PostX(1,i))=TempMin;
    elseif Type(1,i)==2
        clc
        Best=input(['请输入第',num2str(PostX(1,i)),'列的最佳值:']);
        TempMid=Mid(X(:,PostX(1,i)),Best);
        PositX(:,PostX(1,i))=TempMid;
    else
        clc
        a=input(['请输入第',num2str(PostX(1,i)),'列的上界:']);
        b=input(['请输入第',num2str(PostX(1,i)),'列的下界:']);
        TempSec=Section(X(:,PostX(1,i)),a,b);
        PositX(:,PostX(1,i))=TempSec;
    end
end
disp('正向化后的矩阵为:')
disp(PositX)

%% 正向化矩阵标准化
StdX=PositX./(repmat(sum(PositX.^2).^(1/m),m,1));

%% 计算得分并归一化
MaxStdX=max(StdX);
MinStdX=min(StdX);
Score=zeros(m,n);
for i=1:m
    for j=1:n
        Dmax=sum((MaxStdX-StdX(i,j)).^2).^(1/2);
        Dmin=sum((MinStdX-StdX(i,j)).^2).^(1/2);
        Score(i,j)=Dmin/(Dmax+Dmin);
    end
end
NormalX=Score./repmat(sum(Score),m,1);
disp('得分矩阵为:')
disp(NormalX)

子函数
极小型指标
function [MinM]=Min(InitMiM)
line=size(InitMidM,1);
Max=max(max(InitMidM));
MinM=repmat(Max,line,1)-InitMidM;
end
中间型指标
function [MidM]=Mid(InitMidM,Best)
[m,n]=size(InitMidM);
M=max(abs(InitMidM-repmat(Best,m,1)));
Temp=abs(InitMidM-repmat(Best,m,1));
MidM=zeros(m,1);
for i=1:m
    MidM(i,1)=1-Temp(i,1)/M;
end
end
区间型指标
function [SecM]=Section(InitSecM,a,b)
m=min(InitSecM);
n=max(InitSecM);
M=max(a-m,b-n);
line=size(InitSecM,1);
SecM=zeros(line,1);
for i=1:line
    if InitSecM(i,1)>=a && InitSecM(i,1)<=b
        SecM(i,1)=1;
    elseif InitSecM(i,1)<a
        SecM(i,1)=1-(a-InitSecM(i,1))/M;
    else
        SecM(i,1)=1-(InitSecM(i,1)-b)/M;
    end
end
end

刚学了一点点matlab,topsis也不是很懂的那种,所以目前只能写到这种效果(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值