近日,教育部公布了中国国际大学生创新大赛(2025)产业赛道入选企业命题的通知。新工科、新农科、新医科方向的五项命题:分别是“基于AI大模型的光伏发电效率研究与应用“、“基于国产自主可控的多网融合与边缘计算工业互联网控制系统研究与设计”、“基于国产开源软件与开源RISC-V处理器架构的嵌入式智能计算系统研究与设计”、“基于AI大模型的植物生长环境调控专家决策系统研究与设计”、“基于AI大模型与国产可控技术的智慧养老系统研究与设计”。
01
命题一
基于AI大模型的光伏发电效率研究与应用
命题内容:
为落实“碳达峰碳中和”的能源战略目标,预计到2060年,全社会用电量将超过16万亿kWh,新能源发电装机达到50 亿kW,新能源发电量占比将由目前的8%提高到60%以上。光伏发电是当前最重要的新能源发电形式,但其发电效率却受光照、季节、温度和天气晴朗度的影响,目前的光伏发电效率普遍在15%~20%的范围内,而市面上最有效的光伏组件效率也只略高于22%,因此,对光伏发电影响因素进行研究与应用是实现“碳达峰、碳中和”目标的关键。利用物联网、AI大模型等技术,对光伏板的发电环境进行监测,并对监测数据进行有效的处理和精准的分析,建立模型来预测光伏发电效率与各因素之间的关系,进而确定光伏发电的最佳参数组合,包括最佳光照条件、温度控制策略、清洁频率等,以提高光伏发电效率,增加可再生能源的供应量,减少对化石燃料的依赖,为实现我国碳达峰碳中和目标、维护全球生态安全作出贡献。
答题要求:
将物联网、AI大模型等技术应用于光伏发电中,通过光照传感器、温度传感器、污染检测传感器、倾斜角度等传感器采集同一种光伏发电板不同环境下的数据参数,使用AI大模型(如GPT-3.5)分析传感器数据和光伏发电效率,建立模型来预测光伏发电效率与各因素之间的关系。不断训练模型,优化光伏板发电环境,找到最佳的光照条件、温度控制策略、清洁频率参数组合,从而提高光伏发电的效率,助力我国碳达峰碳中和的生态文明建设战略。
02
命题二
基于国产自主可控的多网融合与边缘计算工业互联网控制系统研究与设计
命题内容:
当前,工业互联网已广泛应用于国民经济重点行业,有力推动工业转型升级,催生新增长点,但是,工业互联网产业的应用还面临诸多痛点和难点,从技术上看,工业互联网平台在设备侧的工业数据采集、边缘计算行业工业算法模型的沉淀等方面较为薄弱;在控制系统中,安全国产自主可控能力有待提升;从应用看,我国不同工业行业差异大、需求不一,企业数字化转型程度和意愿不同,企业“不敢用”“不愿用”“不会用”问题仍然突出。为了更好地促进工业互联网技术及产业的发展,解决工业互联网产业需要的安全可靠性问题,并适配工业数据采集所需要的多种异构网络、工业视觉应用所需要的边缘计算模型推理能力,利用嵌入式技术、物联网无线传感网、人工智能技术等,采用国产芯片,自主研发边缘计算控制软硬件系统,实现工业以太网、无线5G、Lora、PROFINET、CAN等多种异构网络数据融合并接入云平台,同时具有AI模型边缘侧计算推理能力的国产工业互联控制系统。
答题要求:
将国产芯片技术、国产嵌入式软件技术、物联网、人工智能边缘计算、AI大模型等技术应用于工业互联网的工业数据采集控制系统中,设计一款国产自主可控的工业互联网设备侧控制软硬件系统:基于国产嵌入式芯片,运行开源操作系统如linux/鸿蒙/RT-thread等,融入工业数据采集需要的不同网络环境包括5G接入、工业千兆以太网、Lora、PROFINET、CAN等通信网络,并设计标准数据协议统一接入到云服务平台(自主设计云平台或国内如中移物联/百度/阿里开放云平台等),同时具备不低于5Tops算力模型推理能力,能接入工业图像视频数据流并进行设备侧本地推理,设计模型、算法、应用的模块化软件框架,加强面向工业应用的模型推理的技术沉淀,推进工业互联网技术的国产自主可控及多协议支持的工业互联场景化应用,为国家工业互联网产业应用及发展提供国产自主可控的技术支撑。
03
命题三
基于国产开源软件与开源RISC-V处理器架构的嵌入式智能计算系统研究与设计
命题内容:
嵌入式技术广泛应用在智慧家电、智能控制、智慧农业、智慧安防、智慧交通等各种领域,但是目前,以国外ARM内核为代表的嵌入式芯片及其嵌入式软件仍然在行业中占据较大份额。在国家推进信息化技术国产自主可控的战略背景下,国内国产嵌入式软硬件系统也在蓬勃发展,尤其是以RISC-V开源架构为代表的嵌入式处理器国产芯片、国产嵌入式操作系统如鸿蒙HarmonyOS、开源RT-thread等嵌入式国产技术正在行业中应用和发展。基于国产技术,设计一套集感知、通讯、应用一体化的嵌入式智能计算系统,在采用RISC-V架构的国产处理器芯片基础上,运行国产操作系统包括HarmonyOS/Linux/RT-thread,同时实现数据采集接口、嵌入式通信、嵌入式视觉应用模型推理等功能,提供国产嵌入式软件及硬件自主可控的完整技术体系。
答题要求:
将国产芯片技术、国产嵌入式软件技术、嵌入式边缘计算技术进行融合,设计具有国产自主可控的嵌入式智能计算控制系统,硬件采用RISC-V开源架构的国产处理器,开发并运行多种开源嵌入式操作系统,包括不限于国产操作系统如华为鸿蒙或RT-thread实时操作系统,实现嵌入智能计算所需要的传感器器数据采集功能,数据支持接入到移动数据中心;同时支持按需运行嵌入式开源Linux操作系统并支持剪裁应用,并实现AI视频图像数据采集与具有模型推理功能,支持国产操作系统如RT-thread/鸿蒙及开源Linux系统的混合部署应用,提供从嵌入式芯片集成、驱动开发、系统移植及感控应用的完整技术体系,能够实现基于国产嵌入式软件及RISC-V国产芯片的智能感知、机器视觉应用及模型推理计算的功能,推动国产自主可控的嵌入式技术发展及应用。
04
命题四
基于AI大模型的植物生长环境调控专家决策系统研究与设计
命题内容:
国家通过《全国现代设施农业建设规划(2023—2030年)》等政策推动农业现代化,重点加强科技研发投入。近年来,劳动力老龄化和短缺,资源环境约束,耕地面积不断减少,而且不断遭受着挤占、退化、污染等困扰。目前农作物主要基于经验种植,缺乏对植物种植的科学性控制,这将直接影响农作物的质量和农作物的产量,传统的农业种植模式己经不能够满足社会发展的需求。利用物联网、AI大模型等技术,对植物的生长环境进行监测,并对监测数据进行有效的处理和精准的分析,建立模型来预测植物生长情况与各因素之间的关系,进而对温度、光照、水分、二氧化碳、肥料等植物所需的生长因素进行精准控制,使作物始终处于最佳的生长环境,达到高效、高产、精准化种植的效果,是解决我国的粮食缺口问题的重要途径。
答题要求:
将物联网、AI大模型等技术应用于智慧农业中,通过光照传感器、土壤湿度传感器、温度传感器、二氧化碳等传感器采集同一种植物不同生长环境下的数据参数,使用AI大模型(如GPT-3.5)分析传感器数据和植物生长情况(如发芽率、生长速度、嫩叶质量等),建立模型来预测植物生长情况与各因素之间的关系。不断训练模型,优化植物生长环境,找到最优的光照、水分、温度等因素组合,从而提高植物的产量和质量,推进智慧农业的建设。
05
命题五
基于AI大模型与国产可控技术的智慧养老系统研究与设计
命题内容:
在当今社会,随着科技的飞速发展和人口老龄化的日益加剧,传统的养老服务模式已难以满足老年人日益增长的多样化、个性化需求。智慧养老技术的兴起,为构建新时代智慧普惠的养老服务体系提供了新的机遇。在技术上,智慧养老系统需要解决数据安全,涉及到的养老人口健康数据等需要有效保证数据安全,所依赖的医疗监测设备及数据平台需要国产自主可控化;在设备监测的环境营造等场景,需要提供适合老年人居住的良好环境及感知监测设备、鼓励并帮助老年人保持健康的生活方式,如定期的体育锻炼和乐观的心态的护理。智慧养老系统涉及到国民数据安全和技术可靠性,稳定性,需要结合智能感知、通讯服务平台、AI大模型及数据分析等,采用国产芯片及软件技术,设计自主可控的智慧养老系统,通过智能感知技术对养老的生活环境包括空气质量、噪声、温湿度等进行监测,同时将医疗监护传感器包括血压、脉搏、心率、心电、血氧、体温、运动状态等进行实时监测并接入到健康养老的云服务平台,支持本地化数据查看,支持远程医疗数据的汇集与管理;同时,通过AI大模型技术实现医疗健康的数据分析决策等。智慧养老通过整合信息技术、物联网、AI大模型、大数据等先进技术,实现了对传统养老服务模式的全面升级,显著提高养老服务的效率和质量,还为老年人提供了更加舒适、便捷的生活环境,从而极大地改变了传统的养老服务模式,推动社会和国家经济、人文健康的和谐发展。
答题要求:
将国产芯片技术、国产嵌入式软件技术、物联网感知、人工智能AI大模型等技术应用于智慧养老系统,实现智慧医疗自助监护智能系统,搭载体温传感器、光电心率传感器、血压传感器、血氧脉搏传感器等,支持数据可视化展示;提供健康腕带等自助健康监护并接入自主可控的云平台;提供养老监护的室内空气质量传感器(温度/湿度/PM2.5/VOC/CO2) 、窗磁检测、火焰探测器、燃气探测器、人体红外传感器、紧急按钮、血压计、称重/体重传感器、感知无线节点等,数据支持接入国产自主可控的云平台,支持健康预警等功能,并通过无线通信的方式传输并存储至云平台,让养老用户能轻松了解自己的身体状况;同时支持AI大模型的接入,实现数据的分析决策等。