JAVA获取随即密码

Java代码 复制代码 收藏代码
  1. package cn.test;
  2. import java.util.HashSet;
  3. import java.util.Random;
  4. import java.util.Set;
  5. public class RandomKey {
  6. /**
  7. * 生成随机密码
  8. *
  9. * @param pwd_len
  10. * 生成的密码的总长度
  11. * @return 密码的字符串
  12. */
  13. public static String genRandomNum(int pwd_len) {
  14. int i; // 生成的随机数
  15. int count = 0; // 生成的密码的长度
  16. char[] str = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
  17. 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
  18. 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8',
  19. '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K',
  20. 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
  21. 'X', 'Y', 'Z', };
  22. final int maxNum = str.length - 1;
  23. StringBuilder pwd = new StringBuilder("");
  24. Random r = new Random();
  25. while (count < pwd_len) {
  26. // 生成随机数,取绝对值,防止生成负数,
  27. i = Math.abs(r.nextInt(maxNum)); // 生成的数最大为36-1
  28. if (i >= 0 && i < str.length) {
  29. pwd.append(str[i]);
  30. count++;
  31. }
  32. }
  33. return pwd.toString();
  34. }
  35. /**
  36. * @param args
  37. */
  38. public static void main(String[] args) {
  39. Set<String> set = new HashSet<String>();
  40. String s = "";
  41. for(int i=0;i < 1000000;i++){
  42. s = genRandomNum(8);
  43. set.add(s);
  44. // System.out.println(s);
  45. }
  46. System.out.println(set.size());
  47. }
  48. }  
6/2025 MP4 出版 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2 Ch 语言:英语 |持续时间:12h 3m |大小: 4.5 GB 通过实际 NLP 项目学习文本预处理、矢量化、神经网络、CNN、RNN 和深度学习 学习内容 学习核心 NLP 任务,如词汇切分、词干提取、词形还原、POS 标记和实体识别,以实现有效的文本预处理。 使用 One-Hot、TF-IDF、BOW、N-grams 和 Word2Vec 将文本转换为向量,用于 ML 和 DL 模型。 了解并实施神经网络,包括感知器、ANN 和数学反向传播。 掌握深度学习概念,如激活函数、损失函数和优化技术,如 SGD 和 Adam 使用 CNN 和 RNN 构建 NLP 和计算机视觉模型,以及真实数据集和端到端工作流程 岗位要求 基本的 Python 编程知识——包括变量、函数和循环,以及 NLP 和 DL 实现 熟悉高中数学——尤其是线性代数、概率和函数,用于理解神经网络和反向传播。 对 AI、ML 或数据科学感兴趣 – 不需要 NLP 或深度学习方面的经验;概念是从头开始教授的 描述 本课程专为渴望深入了解自然语言处理 (NLP) 和深度学习的激动人心的世界的人而设计,这是人工智能行业中增长最快和需求最旺盛的两个领域。无论您是学生、希望提升技能的在职专业人士,还是有抱负的数据科学家,本课程都能为您提供必要的工具和知识,以了解机器如何阅读、解释和学习人类语言。我们从 NLP 的基础开始,从头开始使用文本预处理技术,例如分词化、词干提取、词形还原、停用词删除、POS 标记和命名实体识别。这些技术对于准备非结构化文本数据至关重要,并用于聊天机器人、翻译器和推荐引擎等实际 AI 应用程序。接下来,您将学习如何使用 Bag of Words、TF-IDF、One-Hot E
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值