
LLM + RAG + Langchain
文章平均质量分 63
LLM+RAG+Langchain
bst@微胖子
优秀的架构师曾这样说过:复杂的事情简单做,简单的事情重复做,重复的事情工具做,我们只做工具。这里分享给大家,希望能够帮助众多猴子们。
还有就是在工作中不管是哪级leader指派任务,都要问清楚对方三个问题:1、具体需求是什么?2、开发周期是多久什么时候启动?3、对接配合的相关团队是哪些(UI、后台、前端、测试、产品)
同样在做项目前要自己吃透需求,同时要问清楚自己三个问题:1、为什么要这么干?2、这样干有什么好处?3、还有没有更好的方式方法去做?
项目结束要及时的进行自我复盘、review。同时把做项目前问自己的三个问题在问一边。
相信时间久了,对自己的成长会有所帮助,以此鞭策自己!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Langchain构建RAG对话应用
这里需要切割的是文档,所以方法用错了。原创 2025-07-13 11:51:12 · 176 阅读 · 0 评论 -
Langchain构建代理
如果直接问大模型北京今天的天气如何?这个大模型无法回答,需要采用代理获取结果再交给大模型进行回答。原创 2025-06-13 15:11:21 · 177 阅读 · 0 评论 -
Langchain构建向量数据库和检索器
【代码】Langchain构建向量数据库和检索器。原创 2025-06-13 11:42:39 · 261 阅读 · 0 评论 -
Langchain构建聊天机器人
【代码】Langchain构建聊天机器人。原创 2025-06-05 18:19:21 · 319 阅读 · 0 评论 -
DeepSeek提示工程Prompt Engineering
提示工程通过优化输入指令,提升大语言模型的输出质量。:通过精心设计的提示,可以引导模型更准确地捕捉任务需求,减少歧义。:合理的提示结构能够帮助模型聚焦于关键信息,避免生成无关内容。:针对不同应用场景设计特定提示,使模型输出更符合实际需求。:通过标准化提示模板,使非专业用户也能有效使用大语言模型。:通过创新提示设计,可以探索模型在更多领域的应用潜力。:清晰的提示可以减少反复沟通,提高人机交互的效率。通过优化提示词可以将让大模型回答问题时更加的准确。原创 2025-05-20 15:55:00 · 584 阅读 · 0 评论 -
DeepSeek之RAG检索增强生成
上述代码中deepseek的响应answer就是此处的response,然后衔接上做流式输出处理。原创 2025-05-21 11:47:08 · 478 阅读 · 0 评论