10-pytorch梯度更新方法

文章介绍了在PyTorch中使用autograd和backward方法进行梯度计算,包括如何利用这两个工具求导并更新深度学习模型中的参数。着重讲解了叶节点的概念以及如何通过backward实现反向传播以获取梯度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、方法1 autograd

import torch
from torch import autograd

'''
demo1
'''
x = torch.tensor(1.)
a = torch.tensor(1., requires_grad=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值