ELU激活函数

本文介绍了ELU激活函数的特点及优势:它结合了sigmoid和ReLU的优点,在右侧保持线性以缓解梯度消失,在左侧具备软饱和性以提高对输入变化或噪声的鲁棒性;ELU使网络输出均值接近零,有助于加快收敛速度;实验表明,ELU网络在不同初始化策略下均能稳定收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

           ELU激活函数

          
这里写图片描述

 

  • 融合了sigmoid和ReLU,左侧具有软饱和性,右侧无饱和性。
  • 右侧线性部分使得ELU能够缓解梯度消失,而左侧软饱能够让ELU对输入变化或噪声更鲁棒。
  • ELU的输出均值接近于零,所以收敛速度更快。
  • 在 ImageNet上,不加 Batch Normalization 30 层以上的 ReLU 网络会无法收敛,PReLU网络在MSRA的Fan-in (caffe )初始化下会发散,而 ELU 网络在Fan-in/Fan-out下都能收敛。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值