1.运行生成器生成图片
1.1下载代码
git clone NVlabs/stylegan2
1.2下载stylegan2-ffhq-config-f.pkl与训练模型,放在项目根目录,如下图
1.3修改dnnlib/tflib/custom_ops.py文件
增加
‘C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.16.27023/bin/Hostx64/x64’,
1.4运行生成器
python run_generator.py generate-images --network=stylegan2-ffhq-config-f.pkl --seeds=6600-6625 --truncation-psi=0.5
结果
2训练网络
2.1.1在根目录新建datasets与photos(存放我自定义的数据集)
2.1.2生成数据集
python dataset_tool.py create_from_images datasets/custome_dataset photos
结果
显示结果
pip install opencv-python(我这里的环境报没有cv2这个库的错误)
python dataset_tool.py display datasets/custome_dataset
2.2运行代码
python run_training.py --num-gpus=1 --data-dir=datasets --config=config-f --dataset=custome_dataset --mirror-augment=true
因为只有一个GPU(GTX1070)
因为1024x1024的训练需要至少16G以上的GPU,而我的只有8G所以最后显示显存不够
2.3用训练好的模型生成新的图片
python run_generator.py generate-images --seeds=0-9 --truncation-psi=1.0 --network=results/00006-generate-images/stylegan2-ffhq-config-f.pkl
seeds表示生成多少长图片
2.4评估生成的模型
python run_metrics.py --data-dir=datasets --network=stylegan2-ffhq-config-f.pkl --metrics=fid50k,ppl_wend --dataset=custome_dataset --mirror-augment=true
微信号:herry7788