StyleGAN2(实践-3)

1.运行生成器生成图片

1.1下载代码

git clone NVlabs/stylegan2

1.2下载stylegan2-ffhq-config-f.pkl与训练模型,放在项目根目录,如下图
在这里插入图片描述
1.3修改dnnlib/tflib/custom_ops.py文件
增加
‘C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/VC/Tools/MSVC/14.16.27023/bin/Hostx64/x64’,
在这里插入图片描述
1.4运行生成器

python run_generator.py generate-images --network=stylegan2-ffhq-config-f.pkl --seeds=6600-6625 --truncation-psi=0.5
在这里插入图片描述
结果
在这里插入图片描述
2训练网络

2.1.1在根目录新建datasets与photos(存放我自定义的数据集)
在这里插入图片描述
2.1.2生成数据集

python dataset_tool.py create_from_images datasets/custome_dataset photos
在这里插入图片描述
结果
在这里插入图片描述
显示结果
pip install opencv-python(我这里的环境报没有cv2这个库的错误)
python dataset_tool.py display datasets/custome_dataset
在这里插入图片描述
2.2运行代码
python run_training.py --num-gpus=1 --data-dir=datasets --config=config-f --dataset=custome_dataset --mirror-augment=true
在这里插入图片描述
因为只有一个GPU(GTX1070)
在这里插入图片描述
因为1024x1024的训练需要至少16G以上的GPU,而我的只有8G所以最后显示显存不够
在这里插入图片描述
2.3用训练好的模型生成新的图片

python run_generator.py generate-images --seeds=0-9 --truncation-psi=1.0 --network=results/00006-generate-images/stylegan2-ffhq-config-f.pkl
seeds表示生成多少长图片
在这里插入图片描述
2.4评估生成的模型
python run_metrics.py --data-dir=datasets --network=stylegan2-ffhq-config-f.pkl --metrics=fid50k,ppl_wend --dataset=custome_dataset --mirror-augment=true
在这里插入图片描述
在这里插入图片描述
微信号:herry7788

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值