由于初接触Miniconda,没什么了解,所以摘抄搜索到的一些介绍,记录如下。
Anaconda 是一个用于 数据科学 和 机器学习 的 Python 发行版,它集成了大量常用的科学计算库和工具,并提供了一个强大的包管理器和环境管理器(Conda)。Anaconda 的主要目标是简化数据科学工作流的搭建和管理,使开发者能够快速开始项目。
Miniconda 是一款轻量级的 Python 环境管理工具,是 Anaconda 的简化版本。它专注于提供核心的包管理和环境隔离功能,适合需要灵活控制依赖项的用户。
Miniconda 的核心功能
-
包管理:
-
通过
conda
命令安装、更新、卸载 Python 包(支持非 Python 库)。 -
自动解决依赖冲突,确保环境一致性。
-
-
环境隔离:
-
可创建多个独立的 Python 环境,每个环境可配置不同的 Python 版本和包组合。
-
避免项目间的依赖冲突(例如:项目 A 用 Python 3.8 + TensorFlow 2.4,项目 B 用 Python 3.11 + PyTorch 2.0)。
-
-
跨平台支持:
-
支持 Windows、macOS、Linux 系统,统一开发环境配置。
-
Miniconda 与 Anaconda 的区别
特性 | Miniconda | Anaconda |
---|---|---|
安装体积 | 约 340 MB | 约 500 MB-3 GB |
预装包 | 仅含 Python + Conda | 包含 250+ 科学计算库(NumPy、Pandas 等) |
适用场景 | 需要自定义环境的用户 | 需要开箱即用的数据科学用户 |
灵活性 | 高(按需安装所需包) | 低(预装大量包,可能冗余) |
Miniconda 的典型使用场景
-
数据科学与机器学习
-
管理不同框架(TensorFlow、PyTorch)的版本。
-
隔离 Jupyter Notebook 的依赖。
-
-
开发与测试
-
为不同项目创建独立环境,避免全局包污染。
-
测试代码在不同 Python 版本下的兼容性。
-
-
教学与学习
-
快速搭建 Python 学习环境,无需处理复杂依赖。
-
-
服务器部署
-
在服务器上配置轻量级 Python 环境,减少资源占用。
-
Miniconda 的安装与使用
-
安装步骤:
-
访问 Miniconda 官网,下载对应系统的安装包。
-
按向导安装(建议勾选“添加 Conda 到系统 PATH”)。
-
-
常用命令:
# 创建环境(指定 Python 3.11) conda create -n my_env python=3.11 # 激活环境 conda activate my_env # 安装包(如 NumPy) conda install numpy # 退出环境 conda deactivate # 删除环境 conda remove -n my_env --all # 验证 Python 解释器路径 where python # 查看是否显示新环境 conda info --envs
注意事项
-
依赖冲突:
若安装包时提示冲突,优先使用conda-forge
频道:conda install -c conda-forge package_name
-
频道优先级:
设置conda-forge
为默认频道(推荐):conda config --add channels conda-forge conda config --set channel_priority strict
-
复制虚拟环境到另外一台设备:
在Miniconda的安装路径下,找到envs文件夹,该文件夹中包含了所有的虚拟环境。找到你要拷贝的虚拟环境的文件夹,并将该文件夹复制到目标电脑Miniconda的安装路径下的envs文件夹。
①、尝试将虚拟环境VisoMaster复制到另外一台设备后,运行时有下面错误信息:Fatal error in launcher: Unable to create process using '"H:\miniconda3\envs\visomaster\python.exe" "F:\miniconda3\envs\visomaster\Scripts\pyside6-uic.exe" "app\ui\core\MainWindow.ui" -o "app\ui\core\main_window.py"': ??????????? Fatal error in launcher: Unable to create process using '"H:\miniconda3\envs\visomaster\python.exe" "F:\miniconda3\envs\visomaster\Scripts\pyside6-rcc.exe" "app\ui\core\media.qrc" -o "app\ui\core\media_rc.py"': ???????????
将错误信息丢给deepseek,得到解答如下:
路径冲突: 错误信息中显示 H:\miniconda3\envs\visomaster\python.exe 和 F:\miniconda3\envs\visomaster\Scripts\pyside6-uic.exe 的路径不一致(H 盘和 F 盘),表明环境可能被移动或路径配置错误。 安装损坏: PySide6 的 pyside6-uic.exe 启动器可能未正确关联 Python 解释器。
重新安装 PySide6 卸载并重新安装 PySide6,修复启动器路径: pip uninstall PySide6 -y pip install PySide6 --force-reinstall
错误信息消失,问题解决。
路径一致性:确保 Conda 环境未跨盘符迁移,否则需重新安装。错误发生就是因为跨盘符迁移了,所以通过重新安装pyside6解决了问题。
②、尝试将虚拟环境ComfyU_cp311复制到另外一台设备后,运行失败,无法解决,只能重新构建。
总结
-
Miniconda 适合:需要灵活控制环境、节省存储空间或自定义科学计算工具链的用户。
-
Anaconda 适合:需要快速开始数据科学项目、无需手动安装常用库的用户。
通过 Miniconda,你可以完全掌控 Python 环境,避免版本混乱,提升开发效率。