人脸检测 神经网络+Gabor滤波

本文分享了作者从Ant Design转向图像处理领域的心得体会,并重点介绍了人脸检测的实际应用案例。通过展示成功的实验样本与存在的问题,提出了两种解决方案:一是利用HSV肤色模型进行预处理,二是采用SIFT+RANSAC算法提高检测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11月份,从ant-design转战来到图像处理

1、首先看实验结果,绿色框代表我检测出来的人脸区域,这是两个比较好的样本。

/

2、再看一下不好的实验样本,主要问题是把非人脸区域也当作人脸检测出来了。


3、解决思路,和导师交流是用HSV肤色模型先做预处理,然后以不同窗口检测特征点。另一种解决思路是一个博士给的sift+ransac让初始点尽量落在人脸上(未验证可行性)。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值