MapReduce经典案例--WordCount代码

该博客介绍了如何在Eclipse环境下编写一个简单的Hadoop MapReduce程序,用于实现WordCount功能。首先展示了Map阶段的实现,通过Mapper类将输入文本分割成单词并输出键值对。接着,博客展示了Reduce阶段的实现,使用Reducer类对相同单词的计数进行求和。最后,提供了主类MapReduceDemo来配置和运行整个任务,指定输入和输出路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在eclipse上编写方法,实现一个 WordCount 程序
package cn.cqsw;
 
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
 
public class WCMap extends Mapper<LongWritable, Text, Text, LongWritable> {
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text,LongWritable>.Context context)
throws IOException, InterruptedException {
      	String[] splited=value.toString().split(" ");
        	for(String str :splited)
       	 {
		context.write(new Text(str),new LongWritable(1));
       	 }
        }
}
package cn.cqsw;
 
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
 
 
public class WCReduce extends Reducer<Text, LongWritable,Text, LongWritable> {
@Override
protected void reduce(Text text, Iterable<LongWritable> iterable,Reducer<Text, LongWritable,Text,LongWritable>.Context   context) throws IOException,InterruptedException {
        	long time=0;
        	for(LongWritable lw :iterable)
       	 {
		time+=lw.get();
       	 }
        	context.write(text, new LongWritable(time));
        }
}
package cn.cqsw;
 
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 
public class MapReduceDemo{
	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
	    Configuration conf = new Configuration();
	    Job job = Job.getInstance(conf);
	    job.setJarByClass(MapReduceDemo.class);
	    job.setMapperClass(WCMap.class);
	    job.setReducerClass(WCReduce.class);
	    job.setMapOutputKeyClass(Text.class);
	    job.setMapOutputValueClass(LongWritable.class);
	    job.setOutputKeyClass(Text.class);
	    job.setOutputValueClass(LongWritable.class);
	    Path inputPath = new Path("/hello");
	    Path outputPath = new Path("/output");
	    FileInputFormat.setInputPaths(job, inputPath);
	    FileOutputFormat.setOutputPath(job, outputPath);
	    boolean waitForCompletion = job.waitForCompletion(true);
	    System.exit(waitForCompletion?0:1);
	}
 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长不大的蜡笔小新

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值