Given a non-empty tree with root R R R, and with weight W i W_i Wi assigned to each tree node T i T_i Ti. The weight of a path from R R R to L L L is defined to be the sum of the weights of all the nodes along the path from R R R to any leaf node L L L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N ≤ 100 0<N≤100 0<N≤100, the number of nodes in a tree, M ( < N ) M (<N) M(<N), the number of non-leaf nodes, and 0 < S < 2 30 0<S<2^{30} 0<S<230, the given weight number. The next line contains N positive numbers where W i W_i Wi (<1000) corresponds to the tree node T i T_i Ti. Then M M M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case