本次学习笔记主要记录学习机器学习时的各种记录,包括吴恩达老师视频学习、李宏毅老师视频学习、周志华老师的《机器学习》(西瓜书)以及李航老师的《统计学习方法》。作者能力有限,如有错误等,望联系修改,非常感谢!
机器学习笔记(十一)-聚类(Clustering)
第一版 2022-03-17 初稿
一、无监督学习简介
训练集只有x,没有任何标签y。
两个分开的点集,称为簇。一个能够找到圈出的点集的算法,称为聚类算法。
市场分割
社交网络分析
组织计算机族群
星系的形成
二、K-means简介
k均值是最普及的聚类算法,其接受一个未标记的数据集,然后将数据聚类成不同的组。
k均值是一个迭代算法,假设将数据聚类成n个组,其方法为:
1.首先选择K个随机的点,称为聚类中心。
2.对于数据集中的每一个数据,按照距离K个中心点的距离,将其与距离最近的中心点关3.联起来,与同一个中心点关联的所有点聚成一类。
4.计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。