机器学习笔记(十一)-聚类(Clustering)

本次学习笔记主要记录学习机器学习时的各种记录,包括吴恩达老师视频学习、李宏毅老师视频学习、周志华老师的《机器学习》(西瓜书)以及李航老师的《统计学习方法》。作者能力有限,如有错误等,望联系修改,非常感谢!


第一版       2022-03-17        初稿

一、无监督学习简介

在这里插入图片描述
训练集只有x,没有任何标签y。
两个分开的点集,称为簇。一个能够找到圈出的点集的算法,称为聚类算法。
在这里插入图片描述
市场分割
社交网络分析
组织计算机族群
星系的形成

二、K-means简介

k均值是最普及的聚类算法,其接受一个未标记的数据集,然后将数据聚类成不同的组。
在这里插入图片描述
k均值是一个迭代算法,假设将数据聚类成n个组,其方法为:
1.首先选择K个随机的点,称为聚类中心。
2.对于数据集中的每一个数据,按照距离K个中心点的距离,将其与距离最近的中心点关3.联起来,与同一个中心点关联的所有点聚成一类。
4.计算每一个组的平均值,将该组所关联的中心点移动到平均值的位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值