### ResNet50 架构详解
ResNet50 是一种深度卷积神经网络架构,拥有 50 层残差块。这种设计使得模型能够更有效地训练更深的网络层次,从而提高性能和鲁棒性[^1]。
#### 主要组成部分
- **输入层**:接受图像数据作为输入。
- **初始卷积层**:通常是一个 $7 \times 7$ 的大尺寸卷积核,步幅为 2,用于提取基础特征。
- **最大池化层**:紧随初始卷积之后,进一步减少空间维度。
- **四个阶段的残差模块**:
- 每个阶段包含若干个残差单元(residual blocks)。这些单元内部采用短连接机制来缓解梯度消失问题。
- **全局平均池化层**:位于最后一个阶段之后,负责将特征图转换成固定长度向量表示。
- **全连接分类器**:最终输出类别预测概率分布。
```python
import torch.nn as nn
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
def make_layer(block, planes, blocks, stride=1):
layers = []
downsample = None
if stride != 1 or inplanes != block.expansion * planes:
downsample = nn.Sequential(
nn.Conv2d(inplanes, block.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(block.expansion*planes))
layers.append(block(inplanes, planes, stride, downsample))
inplanes = block.expansion * planes
for i in range(1, blocks):
layers.append(block(inplanes, planes))
return nn.Sequential(*layers)
class ResNet(nn.Module):
def __init__(self, block=Bottleneck, num_classes=1000):
global inplanes
inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = make_layer(block, 64, 3)
self.layer2 = make_layer(block, 128, 4, stride=2)
self.layer3 = make_layer(block, 256, 6, stride=2)
self.layer4 = make_layer(block, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
# 初始化权重...
def _forward_impl(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
model = ResNet()
print(model)
```
### 微调方法
对于特定任务的数据集较小的情况,可以通过迁移学习的方式利用预训练好的 ResNet50 来加速收敛并提升泛化能力:
- 替换最后一层全连接层以适应新的分类数目;
- 冻结前面大部分层的参数不变,只更新新增加部分以及少量最后几层的权值;
- 使用较低的学习率重新训练整个网络;
具体实现如下所示:
```python
from torchvision import models
# 加载预训练模型
pretrained_model = models.resnet50(pretrained=True)
for param in pretrained_model.parameters():
param.requires_grad_(False) # 冻结所有参数
num_ftrs = pretrained_model.fc.in_features
pretrained_model.fc = nn.Linear(num_ftrs, new_num_classes) # 修改输出节点数
criterion = nn.CrossEntropyLoss() # 定义损失函数
optimizer = optim.Adam(filter(lambda p: p.requires_grad, pretrained_model.parameters()), lr=learning_rate) # 只优化可训练参数
```