Seq to Seq

本文介绍在训练过程中Decoder如何使用标签翻译的内容,并解释了EmbeddingLayer的功能,即将单词转化为数字形式的词向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练的时候 decoder 传的是标签翻译的内容 

embedding layer :把单词变为一个数字,变为词向量。

 

### 序列到序列模型 (Seq2Seq) 的代码实现 为了更好地理解 Seq2Seq 模型的工作机制,下面提供了一个基于 TensorFlow 和 Keras 实现的简单例子。此示例展示了如何定义编码器和解码器结构并完成基本的数据预处理工作。 #### 编码器部分 编码器负责接收输入序列,并将其转换成固定长度的状态向量表示形式: ```python import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Embedding, Dense vocab_size = 10000 # 单词表大小 embedding_dim = 256 # 嵌入维度 units = 512 # LSTM单元数 # 定义编码器层 encoder_inputs = Input(shape=(None,)) enc_emb = Embedding(vocab_size, embedding_dim)(encoder_inputs) _, state_h, state_c = LSTM(units, return_state=True)(enc_emb) encoder_states = [state_h, state_c] ``` 上述代码片段创建了编码器网络架构[^3]。这里采用了双向LSTM作为主要组件之一;它能够捕捉时间步之间的长期依赖关系,从而提高对于较长文本的理解能力。 #### 解码器部分 接着是解码器的设计,该模块接受来自编码器的最后一刻状态作为初始隐藏状态,并逐步生成目标语言中的单词预测概率分布: ```python decoder_inputs = Input(shape=(None,)) dec_emb_layer = Embedding(vocab_size, embedding_dim) dec_emb = dec_emb_layer(decoder_inputs) # 使用相同的LSTM参数设置初始化解码器LSTM decoder_lstm = LSTM(units, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(dec_emb, initial_state=encoder_states) # 添加全连接层用于映射至词汇空间 decoder_dense = Dense(vocab_size, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) # 构建完整的Seq2Seq模型 model = Model([encoder_inputs, decoder_inputs], decoder_outputs) ``` 这段脚本完成了整个Seq2Seq框架搭建过程的一部分——即构建了解码端的具体细节。值得注意的是,在实际应用中还需要考虑更多因素如注意力机制的应用等来进一步优化性能表现。 #### 训练与评估阶段切换 当涉及到训练或测试模式下的行为差异时,则可以利用 `train()` 及 `eval()` 方法来进行控制: ```python # 切换为评估模式 model.eval() with torch.no_grad(): # 关闭梯度计算以节省内存资源 ... ``` 以上操作确保了在推理期间不会更新任何权重参数,并且禁用了诸如Dropout之类的正则化技术[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值