winCE下实现全屏的C#代码

本文介绍了一个使用C#实现窗口全屏显示与还原功能的方法。通过调用FindWindow, ShowWindow及SystemParametersInfo等API函数,可以实现任务栏的隐藏与显示,并能保存并恢复屏幕的工作区设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 namespace TaskBarHide
2 {
3 public partial class MainForm : Form
4 {
5 public MainForm()
6 {
7 InitializeComponent();
8 }
9
10 private void btnShow_Click( object sender, EventArgs e)
11 {
12 Rectangle rect = new Rectangle();
13 FullScreenClass.SetFullScreen( true , ref rect); // 显示
14 btnShow.Enabled = false ;
15 btnHide.Enabled = true ;
16 }
17
18 private void btnHide_Click( object sender, EventArgs e)
19 {
20 Rectangle rect = new Rectangle();
21 FullScreenClass.SetFullScreen( false , ref rect); // 隐藏
22 btnShow.Enabled = true ;
23 btnHide.Enabled = false ;
24 }
25 }
26
27 public class FullScreenClass
28 {
29 public const int SPI_SETWORKAREA = 47 ;
30 public const int SPI_GETWORKAREA = 48 ;
31 public const int SW_HIDE = 0x00 ;
32 public const int SW_SHOW = 0x0001 ;
33 public const int SPIF_UPDATEINIFILE = 0x01 ;
34 [DllImport( " coredll.dll " , EntryPoint = " FindWindow " )]
35 private static extern IntPtr FindWindow( string lpWindowName, string lpClassName);
36 [DllImport( " coredll.dll " , EntryPoint = " ShowWindow " )]
37 private static extern bool ShowWindow(IntPtr hwnd, int nCmdShow);
38 [DllImport( " coredll.dll " , EntryPoint = " SystemParametersInfo " )]
39 private static extern int SystemParametersInfo( int uAction, int uParam, ref Rectangle lpvParam, int fuWinIni);
40
41 ///
42 /// 设置全屏或取消全屏
43 ///
44 /// true:全屏 false:恢复
45 /// 设置的时候,此参数返回原始尺寸,恢复时用此参数设置恢复
46 /// 设置结果
47 public static bool SetFullScreen( bool fullscreen, ref Rectangle rectOld)
48 {
49 IntPtr Hwnd = FindWindow( " HHTaskBar " , null );
50 if (Hwnd == IntPtr.Zero) return false ;
51 if (fullscreen)
52 {
53 ShowWindow(Hwnd, SW_HIDE);
54 Rectangle rectFull = Screen.PrimaryScreen.Bounds;
55 SystemParametersInfo(SPI_GETWORKAREA, 0 , ref rectOld, SPIF_UPDATEINIFILE); // get
56 SystemParametersInfo(SPI_SETWORKAREA, 0 , ref rectFull, SPIF_UPDATEINIFILE); // set
57 }
58 else
59 {
60 ShowWindow(Hwnd, SW_SHOW);
61 SystemParametersInfo(SPI_SETWORKAREA, 0 , ref rectOld, SPIF_UPDATEINIFILE);
62 }
63 return true ;
64 }
65
66 }
67 }
 
### Swin Transformer 论文精读:Hierarchical Vision Transformer Using Shifted Windows Swin Transformer 是一种基于视觉的分层 Transformer 模型,其核心创新在于通过 **Shifted Window-based Self-Attention** 实现了线性计算复杂度,同时能够生成多尺度特征表示。这种方法在图像分类、目标检测和语义分割等任务中取得了显著的性能提升 [^2]。 #### 核心架构概述 Swin Transformer 的整体结构分为多个阶段(Stage),每个阶段包含多个 Swin Transformer Block。这些块使用 **窗口化自注意力机制** 和 **移位窗口策略** 来实现高效计算并捕捉长距离依赖关系。 - **分层特征提取** 类似于传统卷积神经网络(如 ResNet),Swin Transformer 采用分层设计来逐步降低空间分辨率并增加通道维度。这种设计允许模型从局部到全局地构建特征表示。 - **窗口划分与移位窗口机制** 在每个 Swin Transformer Block 中,输入特征图被划分为不重叠的窗口,并在这些窗口内执行自注意力计算。为了增强跨窗口的信息交互,在下一个 Block 中对窗口进行移位操作(Shifted Windows)。这种方式既减少了计算量,又保持了模型对全局信息的感知能力 [^1]。 ```python # 窗口划分伪代码示例 def window_partition(x, window_size): B, H, W, C = x.shape # 将图像划分为多个窗口 x = tf.reshape(x, shape=[B, H // window_size, window_size, W // window_size, window_size, C]) windows = tf.transpose(x, perm=[0, 1, 3, 2, 4, 5]) return tf.reshape(windows, shape=[-1, window_size, window_size, C]) # 移位窗口伪代码 def shifted_window_attention(x, window_size, shift_size): B, H, W, C = x.shape # 对特征图进行滚动操作以实现窗口移位 x = tf.roll(x, shift=(-shift_size, -shift_size), axis=(1, 2)) return window_partition(x, window_size) ``` #### 自注意力机制优化 传统的 Vision TransformerViT)在整个图像上应用自注意力机制,导致计算复杂度为 $O(n^2)$,其中 $n$ 是图像块的数量。而 Swin Transformer 通过将注意力限制在局部窗口内,将复杂度降低到 $O(n)$,使其适用于高分辨率图像处理 [^4]。 此外,移位窗口机制确保了相邻窗口之间的信息流动,从而避免了局部注意力带来的信息隔离问题。这种设计使得 Swin Transformer 能够在保持计算效率的同时实现全局建模能力。 #### 实验结果与性能优势 Swin Transformer 在多个视觉任务中表现出色: - **ImageNet 分类任务**:Swin-Tiny、Swin-Small、Swin-Base 和 Swin-Large 四种变体均在 ImageNet-1K 上实现了优于其他 Transformer 主干网络的 Top-1 准确率。 - **COCO 目标检测**:在 COCO 数据集上,Swin Transformer 在 Faster R-CNN 框架下达到了 SOTA 性能,mAP 超过之前的最佳方法。 - **ADE20K 语义分割**:在 ADE20K 数据集上,Swin Transformer 作为编码器也取得了领先的 mIoU 指标 [^2]。 #### 消融实验分析 论文还进行了详细的消融研究,验证了以下几个关键组件的有效性: - **窗口大小的影响**:较大的窗口有助于捕捉更广泛的上下文,但会增加计算开销。 - **移位窗口的重要性**:实验证明,移位机制可以显著提升模型性能,尤其是在长距离依赖任务中。 - **不同层级的设计**:通过对比不同层级深度和通道配置,论文展示了如何平衡精度与效率 [^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值