Yolov5详细教程

YOLOv5详细教程

目录

  1. YOLOv5简介
  2. 环境安装
  3. YOLOv5架构详解
  4. 数据准备
  5. 模型训练
  6. 模型推理
  7. 模型优化
  8. 实际应用案例
  9. 常见问题解决

1. YOLOv5简介

1.1 什么是YOLOv5?

YOLOv5(You Only Look Once v5)是由Ultralytics公司开发的目标检测算法,基于PyTorch实现。它是YOLO系列的第五代,具有以下特点:

  • 实时性强:可以达到实时检测的效果
  • 精度高:在保持速度的同时维持较高的检测精度
  • 易于使用:提供了完整的训练和推理流程
  • 模型多样:提供不同大小的模型适应不同需求

1.2 YOLOv5的优势

  • 🚀 快速训练:相比其他算法训练时间更短
  • 📱 移动端友好:支持导出为多种格式(ONNX、TensorRT等)
  • 🎯 高精度:在COCO数据集上表现优秀
  • 🛠️ 易于定制:支持自定义数据集训练

2. 环境安装

2.1 系统要求

  • Python 3.7+
  • PyTorch 1.7+
  • CUDA 10.2+(GPU加速)

2.2 安装步骤

方式一:从GitHub克隆
# 克隆YOLOv5仓库
git clone https://github.com/ultralytics/yolov5
cd yolov5

# 安装依赖
pip install -r requirements.txt
方式二:使用conda创建环境
# 创建虚拟环境
conda create -n yolov5 python=3.8
conda activate yolov5

# 安装PyTorch(根据你的CUDA版本选择)
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia

# 安装其他依赖
pip install ultralytics

2.3 验证安装

import torch
import ultralytics

print(f"PyTorch版本: {
     
     torch.__version__}")
print(f"CUDA可用: {
     
     torch.cuda.is_available()}")
print(f"Ultralytics版本: {
     
     ultralytics.__version__}")

3. YOLOv5架构详解

3.1 整体架构

YOLOv5由三个主要部分组成:

  1. Backbone(骨干网络):CSPDarknet53
  2. Neck(颈部网络):PANet
  3. Head(检测头):YOLOv5 Head
输入图像 -> Backbone -> Neck -> Head -> 输出
                     ↓
                  特征提取

3.2 模型变体

YOLOv5提供了5个不同大小的模型:

模型 参数量 FLOPs 速度 精度
YOLOv5n 1.9M 4.5G ⭐⭐⭐⭐⭐ ⭐⭐
YOLOv5s 7.2M 16.5G ⭐⭐⭐⭐ ⭐⭐⭐
YOLOv5m 21.2M 49.0G ⭐⭐⭐ ⭐⭐⭐⭐
YOLOv5l 46.5M 109.1G ⭐⭐ ⭐⭐⭐⭐⭐
YOLOv5x 86.7M 205.7G ⭐⭐⭐⭐⭐

3.3 关键技术

  • CSP结构:减少计算量同时保持精度
  • Focus模块:提高特征提取效率
  • PANet:增强特征金字塔网络
  • Mosaic数据增强:提高模型泛化能力

4. 数据准备

4.1 数据集格式

YOLOv5使用YOLO格式的标注文件:

数据集结构:
dataset/
├── images/
│   ├── train/
│   └── val/
└── labels/
    ├── train/
    └── val/

4.2 标注格式

每个图像对应一个.txt文件,格式为:

class_id center_x center_y width height

其中坐标都是相对值(0-1)。

4.3 创建数据集配置文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzcufo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值