
TensorFlow
Java烂笔头any
好记性不如烂笔头!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
学习笔记 | 深度学习开发—TensorFlow实践(基础概念)
TensorFlow计算模型—计算图 1,概念 ①TensorFlow=Tensor + Flow Tensor 张量 Tensorflow中,所有的数据都通过张量的形式来表示 张量没有真正保存数字,二十保存的是计算过程 数据结构:多维数组 Flow 流 计算模型:张量之间通过计算而转换的过程 基础代码: Ⅰ import tensorflow as tf#导入ten...原创 2019-09-29 14:15:40 · 275 阅读 · 0 评论 -
学习笔记 | 深度学习开发—TensorFlow实践(基本运算)
TensorFlow运行模型—会话 Session会话拥有并管理TensorFlow程序运行时的所有资源,当所有计算完成之后需要关闭会话帮助系统回收资源。 会话模式1 sess=tf.Session()#创建会话 sess.run()#启动会话 sess.close()#关闭会话,释放资源 sess=tf.Session() try: sess.run() except:...原创 2019-09-29 20:19:16 · 235 阅读 · 0 评论 -
学习笔记 | 深度学习开发—TensorFlow实践(TensorBoard可视化工具)
TensorBoard是TensorFlow的可视化工具 通过TensorFlow程序运行过程中输出的日志文件可视化TensorFlow程序的运行状态。 TensorBoard和TensorFlow程序在不同的进程中 案例: 代码 import tensorflow as tf#导入tensorflow模型 tf.reset_default_graph()#TensorBoa...原创 2019-09-29 21:34:33 · 266 阅读 · 0 评论 -
学习笔记 | 深度学习开发—TensorFlow实践(线性回归 tensorflow实战)
监督式机器学习 1.简单的线性回归案例 确定y=w*x+b这样的方程,其中w和b的值 2.术语:标签和特征 标签:是我们要预测的真实事物:y,线性回归中的y变量 特征:是指用于描述数据的输入变量:xi线性回归中的{x1,x2,x3,……,xn}变量 3.样本和模型 样本是指数据的特定实例:x 有标签样本具有{特征,标签}:{x,y}:用于训练模型 无标签样本具有{特征,?}:...原创 2019-09-30 21:36:13 · 410 阅读 · 0 评论 -
numpy.random.randn()与numpy.random.rand()的区别
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中。 numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值。 numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中。 代码: import numpy as np arr1 = np.random.randn(...转载 2019-10-05 19:41:43 · 208 阅读 · 0 评论 -
TensorFlow中random_normal和truncated_normal的区别
区别如下: tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None) 正太分布随机数,均值mean,标准差stddev tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)...转载 2019-10-07 14:39:59 · 373 阅读 · 0 评论