LSTM结构

在前面讲的【Deep learning】循环神经网络RNN中,我们对RNN模型做了总结。由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用。下面我们就对LSTM模型做一个总结。

1.从RNN到LSTM

img

img

其中上图是传统RNN结构框架,而下图为LSTM结构框架,对比两图可以发现LSTM比传统RNN要复杂得多。它也是一种特殊的循环体结构,拥有三个“门”结构的特殊网络结构:遗忘门、输入门和输出门。下面就将具体介绍每一种门都是怎么工作的。

2.遗忘门

遗忘门(forget gate)顾名思义,是控制是否遗忘的,在LSTM中即以一定的概率控制是否遗忘上一层的隐藏细胞状态。举个栗子,比如一段文章中先介绍了某地原来是绿水蓝天,但是后来被污染了。于是在看到被污染了之后,循环神经网络就会“忘记”了之前绿水蓝天的状态。这就是“遗忘门”工作内容。

遗忘门子结构如下图所示:
img

图中输入的有上一序列的隐藏状态h(t−1)和本序列数据x(t),通过一个激活函数,一般是sigmoid,得到遗忘门的输出f(t)。由于sigmoid的输出f(t)在[0,1]之间,因此这里的输出f^{(t)}代表了遗忘上一层隐藏细胞状态的概率。用数学表达式即为:

f ( t ) = σ ( W f h ( t − 1 ) + U f x ( t ) + b f ) f^{(t)}=\sigma(W_fh^{(t-1)}+U_fx^{(t)}+b_f) f(t)=σ(Wfh(t1)+Ufx(t)+bf)

其中Wf,Uf,bf为线性关系的系数和偏倚,和RNN中的类似。σ为sigmoid激活函数。

3.输入门

在RNN经历“遗忘门”之后,它还需要从当前的输入来补充最新的记忆,这就需要“输入门”来完成。

输入门(input gate)负责处理当前序列位置的输入,它的子结构如下图:

img

从图中可以看到输入门由两部分组成,第一部分使用了sigmoid激活函数,输出为i(t),第二部分使用了tanh激活函数,输出为a(t), 两者的结果后面会相乘再去更新细胞状态。用数学表达式即为:

i ( t ) = σ ( W i h ( t − 1 ) + U i x ( t ) + b i ) a ( t ) = t a n h ( W a h ( t − 1 ) + U a x ( t ) + b a ) \begin{gathered} \begin{aligned}i^{(t)}=\sigma(W_ih^{(t-1)}+U_ix^{(t)}+b_i)\end{aligned} \\ a^{(t)}=tanh(W_ah^{(t-1)}+U_ax^{(t)}+b_a) \end{gathered} i(t)=σ(Wih(t1)+Uix(t)+bi)a(t)=tanh(Wah(t1)+Uax(t)+ba)

其中Wi,Ui,bi,Wa,Ua,ba,为线性关系的系数和偏倚,和RNN中的类似。σ为sigmoid激活函数。

4. Cell状态更新

在研究LSTM输出门之前,我们要先看看LSTM之细胞状态。前面的遗忘门和输入门的结果都会作用于细胞状态C(t)。我们来看看从细胞状态C(t−1)如何得到C(t)。如下图所示:

img

细胞状态C(t)由两部分组成,第一部分是C(t−1)和遗忘门输出f(t)的乘积,第二部分是输入门的i(t)和a(t)的乘积,即:

C ( t ) = C ( t − 1 ) ⊙ f ( t ) + i ( t ) ⊙ a ( t ) C^{(t)}=C^{(t-1)}\odot f^{(t)}+i^{(t)}\odot a^{(t)} C

### LSTM神经网络结构详解 LSTM(Long Short-Term Memory),即长短时记忆网络,是一种特殊的RNN(循环神经网络)。它通过引入门控机制解决了传统RNN中的梯度消失和长期依赖问题。以下是关于其结构及其工作原理的详细说明。 #### 1. LSTM的核心组件 LSTM的主要组成部分包括输入门、遗忘门、输出门以及细胞状态。这些部分共同协作来控制信息流并决定哪些数据应该被记住或忘记[^1]。 - **输入门 (Input Gate)**:用于确定当前时刻的新信息有多少会被写入单元状态。 - **遗忘门 (Forget Gate)**:负责决定前一时刻的状态中有多少比例的信息需要保留下来或者丢弃掉。 - **输出门 (Output Gate)**:用来计算最终的隐藏层输出值,并将其传递给下一个时间步长作为输入的一部分。 #### 2. 工作流程描述 在一个标准的时间步骤 t 中,LSTM 的操作如下: 1. 首先利用遗忘门 f_t 来判断先前存储的内容 c_(t−1) 哪些应当保持不变; 2. 接着由输入门 i_t 和候选向量 g_t 决定新加入的数据; 3. 更新后的单元状态 C_t 是旧状态经过遗忘之后加上新的有效信息的结果; 4. 最后依据输出门 o_t 计算得到该阶段的实际输出 h_t ,这一步会考虑最新的单元状态 C_t 并生成外部可见的行为表现形式。 #### 实现方法概述 要实现一个完整的LSTM模型通常涉及以下几个关键环节: - 数据预处理: 将原始文本转换成适合喂养给神经网络的形式, 如词嵌入(word embedding); - 构建网络架构: 使用框架(如TensorFlow/Keras 或 PyTorch )定义包含多层堆叠lstm cell 的整体拓扑; - 编译训练过程: 设置损失函数(loss function),优化器(optimizer),评估指标(metric)等参数配置项以便后续调优迭代求解最优权重组合; - 执行验证测试: 对已构建好的预测引擎进行性能评测确认是否满足预期目标要求. 下面给出一段简单的Python代码示例展示如何使用Keras库快速搭建起基础版本的LSTM分类器: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding, LSTM, Dense model = Sequential() model.add(Embedding(input_dim=vocab_size, output_dim=embedding_dim)) model.add(LSTM(units=lstm_units)) model.add(Dense(units=num_classes, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ``` 此脚本片段展示了从加载必要的类开始直到编译完成整个流水线的过程.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值