pytorch实现CNN模型(spatial XuNet)训练模型

本文档介绍了如何使用PyTorch实现 Spatial XuNet 模型,基于XuNet论文,详细阐述了数据集准备,利用PyTorch Dataset和DataLoader加载自定义图像数据集,并参考了PyTorch官方例子进行CNN模型的训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import argparse
import torch.utils.data as data
from torch.utils.data import DataLoader, Dataset

import numpy as np
import cv2

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '6, 7'

class xu_net(nn.Module):
    def __init__(self):
        super(xu_net, self).__init__()

        self.conv1 = nn.Conv2d(1, 8, 5)
        self.conv2 = nn.Conv2d(8, 16, 5)
        self.conv3 = nn.Conv2d(16, 32, 1)
        self.conv4 = nn.Conv2d(32, 64, 1)
        self.conv5 = nn.Conv2d(64, 128, 1)

        self.fc = nn.Linear(128, 2)

        self.bn1 = nn.BatchNorm2d(8)
        self.bn2 = nn.BatchNorm2d(16)
        self.bn3 = nn.BatchNorm2d(32)
        self.bn4 = nn.BatchNorm2d(64)
        self.bn5 = nn.BatchNorm2d(128)

        self.avg_pool1_4 = nn.AvgPool2d(5, 2)

    def forward(self, x):
        F_0 = np.array([[[[-1 / 12.]], [[2 / 12.]], [[-2 / 12.]], [[2 / 12.]], [[-1 / 12.]]],
                               [[[2 / 12.]], [[-6 / 12.]], [[8 / 12.]], [[-6 / 12.]], [[2 / 12.]]],
                               [[[-2 / 12.]], [[8 / 12.]], [[-12 / 12.]], [[8 / 12.]], [[-2 / 12.]]],
                               [[[2 / 12.]], [[-6 / 12.]], [[8 / 12.]], [[-6 / 12.]], [[2 / 12.]]],
                               [[[-1 / 12.]], [[2 / 12.]], [[-2 / 12.]], [[2 / 12.]], [[-1 / 12.]]]], dtype=np.float)
        F_0 = F_0.reshape((1, 1, 5, 5))
        F_0 = torch.from_numpy(F_0).to(torch.device('cuda'), dtype=torch.float)
        x = x.reshape((-1, 1, 256, 256)) # x shape, batch, channel, height, width

        # group 1
        x = F.conv2d(x, F_0, padd
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值