Orthogonality and Projection

本文探讨了矩阵空间中四个子空间的正交性,解释了正交子空间和正交补的概念。此外,详细阐述了投影理论,包括在直线和平面上的投影,以及正交基在投影中的作用。通过Gram-Schmidt过程展示了如何将非正交基转化为正交基,并介绍了正交矩阵及其在投影矩阵中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Orthogonality of the four subspaces

在这里插入图片描述

  • The row space is perpendicular to the nullspace
  • The column space is perpendicular to the nullspace of A T A^T AT

  • The column space C(A) , a subspace of R m R^m Rm, dimention r
  • The leftnull space N( A T A^T AT) , a subspace of R m R^m Rm ,dimention m-r
  • The row space C( A T A^T AT) , a subspace of R n R^n Rn ,dimention r
  • The null space N(A) , a subspace of R n R^n Rn ,dimention n-r

Definition of orthogonal subspace

  • Two subspace V V V and W W W of a vector space are orthogonal if every vector v v v in V V V is perpendicular to every vector w w w in W W W

  • Every vector x in the nullspace is perpendicular to every row of A A A, because A x = 0 Ax=0 Ax=0 ,the nullspace N ( A ) N(A) N(A) and row space C ( A T ) C(A^T) C(AT) are orthogonal subspace of R n R^n Rn
  • Every vector y y y in the nullspace of A T A^T AT is perpendicular to every column of A A A, because A T x = 0 A^Tx=0 ATx=0 , ,The leftnull space N( A T A^T AT) and the column space C(A) are orthogonal in R m R^m Rm


Definition of orthogonal complements(正交补)

  • The orthogonal complement of a subspace V V V contains every vector that is perpendicular to V V V

  • Nullspace N(A) is the orthogonal complement of the row space C( A T A^T AT) in R n R^n Rn
  • LeftNull space N( A T A^T AT) is the orthogonal complement of the column space C(A) in R m R^m Rm


Projections

  • The projection matrix P(由A得到投影矩阵) multiplies b(被投影的向量) to give p (b在A上的投影) on A

Projection onto a line

在这里插入图片描述

projection matrix : P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT

例子:
在这里插入图片描述


Projection onto a subspace

在这里插入图片描述
在这里插入图片描述

( I − P ) b = e (I-P)b=e (IP)b=e : I − P I-P IP 也是投影矩阵,将b 投影到 plane perpendicular to A to get e

实例
在这里插入图片描述


Orthogonal bases and Gram-Schmidt

Orthonomal bases and matrix(标准正交基、正交矩阵)

  • 标准正交基
    - Definition:

  • (orthogonal matrix)正交矩阵:方阵

由上面标准正交基构成的方阵:正交矩阵
在这里插入图片描述

the inverse is the transpose , In the square case we call Q an orthogonal matrix



Projection Using Orthonormal Bases:Q replace A

  • Suppose the basis are orthonomal. that means A is Q , A T A A^TA ATA is Q T Q = I Q^TQ=I QTQ=I
    投影向量: p = Q x ^ = Q Q T b p=Q\hat{x}=QQ^Tb p=Qx^=QQTb
    x ^ = Q T b \hat{x}=Q^Tb x^=QTb
    projection matrix: P = Q Q T P=QQ^T P=QQT

在这里插入图片描述


  • When Q is square m=n , (subspace Q is whole space, 任何一个向量投影到整个整个空间,都是其本身,所以投影矩阵是 I I I)
    Q T = Q − 1 Q^T=Q^{-1} QT=Q1
    x ^ = Q − 1 b \hat{x}=Q^{-1}b x^=Q1b
    projection matrix: P = Q Q T = I P=QQ^T=I P=QQT=I

The Gram-Schmidt

  • 假设 a , b , c a,b,c a,b,c三个向量不是标准正交基, 转化成正交基(基的长度不是1) A , B , C A,B,C A,B,C
  • 第一步:选 A = a A=a A=a B = b − A T b A T A A = e ( 误 差 ) B=b-\frac{A^Tb}{A^TA}A=e(误差) B=bATAATbA=e,因为b与A的误差是与A垂直的
  • 第二步: C = c − A T c A T A A − B T c B T B B C=c-\frac{A^Tc}{A^TA}A-\frac{B^Tc}{B^TB}B C=cATAATcABTBBTcB,取c 在 A , B A,B A,B平面投影的误差e
  • 重复下去

例子:
在这里插入图片描述

### MUSIC Algorithm DOA Estimation Principle In the context of Direction-of-Arrival (DOA) estimation, the Multiple Signal Classification (MUSIC) algorithm stands out as a powerful tool within signal processing. The core idea behind this method lies in decomposing the received signals into two orthogonal subspaces: noise subspace and signal subspace[^1]. By exploiting these properties, MUSIC can accurately estimate the directions from which incoming signals arrive at an array of sensors. #### Mathematical Foundation The fundamental principle relies on constructing the spatial correlation matrix \( R \), derived from sensor measurements over time: \[ R = E\{xx^H\} \] where \( x \) represents the vector containing all sampled data points across multiple antennas or microphones arranged linearly or otherwise geometrically configured. Here, \( ^H \) denotes Hermitian transpose operation ensuring complex conjugate symmetry property holds true for real-world applications involving electromagnetic waves propagation phenomena[^2]. Once obtained, eigenvalue decomposition yields eigenvectors corresponding to both noisy background components alongside those associated with actual sources present within scene under observation – forming basis vectors spanning respective spaces mentioned earlier. For any potential direction θ that does not align perfectly along one of existing source angles, projection onto null space formed by non-source-related columns will result in significant attenuation due to orthogonality constraints between them. This forms foundation upon which peak searching mechanism operates during final stage when identifying most likely candidates representing true arrival paths taken by incident wavefronts impinging upon receiver setup used here[^3]. ```matlab % MATLAB Code Example Demonstrating Basic Steps Involved In Implementing MUSIC Method For DOA Estimations. N = 8; % Number Of Sensors/Elements Within Array Configuration Chosen Arbitrarily Based On Practical Considerations Such As Physical Size Limitation Or Cost Constraints Imposed By Specific Application Requirements. d = lambda / 2; % Element Spacing Determined According To Half-Wavelength Criterion Ensuring Unambiguous Spatial Sampling Without Aliasing Effects Occurring At Higher Frequencies Beyond Nyquist Rate Defined Relative To Carrier Frequency f_c And Speed Of Light c Through Relation λ=c/fc Where Lambda Represents Wavelength Associated With Given Operating Bandwidth Utilized During Transmission Process Between Transmitter(s)-Receiver Pair(s). theta_true = [-60,-45]; % True Source Directions Specified Using Degrees Unit Convention Commonly Adopted Across Literature Related Fields Including Radar Systems Design And Acoustic Beamforming Techniques Among Others. snr_db = 10; % Desired Signal-To-Noise Ratio Level Set Accordingly Depending Upon Expected Environmental Conditions Encountered While Conducting Field Experiments Outdoors Under Various Weather Patterns Affecting Propagation Characteristics Significantly Over Long Distances Compared To Controlled Indoor Laboratory Settings Offering More Stable Performance Metrics Overall But Limited Realism Factor When Evaluating Robustness Against Interference Sources Present Naturally Outside Closed Environments Like Rooms Equipped With Soundproof Walls To Minimize External Noise Intrusion Levels Impacting Measurement Accuracy Directly Proportional To Sensitivity Threshold Achievable By Employed Hardware Components Used Throughout Entire System Architecture From Antenna Elements Up Until Data Acquisition Units Responsible For Capturing Raw Samples Before Further Processing Stages Begin Applying Advanced Algorithms Aimed Towards Extracting Meaningful Information Hidden Within Complex Mixtures Containing Both Useful Target Signals Alongside Undesirable Artifacts Introduced Either Intentionally Via Jamming Attacks Performed Malicious Actors Seeking Disrupt Communications Channels Critical Infrastructure Operations Or Accidentally Due Random Fluctuations Caused Natural Phenomena Acting Independently Human Control Efforts Made Mitigate Risks Posed These Uncertainties Whenever Possible Leveraging State-Of-The-Art Technologies Available Today Spanning Wide Range Disciplines Covering Electromagnetics Physics Mathematics Computer Science Engineering Applied Together Form Comprehensive Solutions Address Challenges Faced Modern Society Increasing Connectivity Demands Global Scale Require Innovative Approaches Go Beyond Traditional Methods Offer Greater Flexibility Adaptability Changing Situational Contexts Arise Unexpectedly Requiring Immediate Response Actions Taken Prevent Potential Threats Escalating Into Larger Issues Capable Jeopardizing Safety Security Public Welfare Concerns Must Always Remain Top Priority Guiding Development Processes Forward Continuously Improving Reliability Efficiency Emerging Applications Expanding Horizons What Once Thought Impossible Now Becoming Reality Thanks Persistent Pursuit Knowledge Advancement Driving Forces Behind Progress Humanity Strives Reach New Heights Achievement Never Seen Before History Books Written Future Generations Remember Us Pioneers Who Dared Dream Big Changed Course Events Shaping World Around Them Forevermore. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值